モデルを用いた人体の動作推定法 — 慣性の導入 —

A Human Motion Estimation Method Using a Model — Introduction of Intertia —

亀田 聡彦 美濃 導彦 池田 克夫
KAMEDA Yoshinari MINOH Michihiko IKEDA Katsuo
京都大学工学部
Faculty of Engineering, Kyoto University

1 はじめに

筆者らはこれまで、モデルマッチング法を用いて動画像から人体の動作推定を行う方法について研究してきた [1]。この方法では、予め対象となる人体の形状モデルを用意し、入力画像を二値化して得られるシルエット領域とモデルとの投影における関係を数値化しマッチング評価値を得る。このとき、慣性を考慮することによってマッチング評価値を変える計算量を削減することを筆者らは提案した [1]。本稿ではマッチング評価値において慣性を考慮し、重複にも対応できる動作推定法について考察する。

2 マッチング処理

本節では、使用する人体モデルとマッチング処理について簡単に説明する。

使用する人体モデルは15個の剛体部分から成り立っている。隣接する刚体間には一軸から三軸までの関節が存在し、全ての関節角度が決定される。人体モデルの姿勢は一意に定まる。

マッチング処理は、モデル映像学のルート部分からリーフ部分に向けた二値化処理を辿りながら、一度に一定の関節角度を決定していく。各関節角度を決定する際には、当該剛体部分の画像平面上への投影と、そのフレームのシルエット領域との重複関係を調べる。各フレームには取り得る角度の上限・下限が存在する。各フレーム内の重複関係を評価すればよいことになるが、これで計算量は膨大になる。そこで、筆者らは慣性を利用して取り得る関節角度の範囲を限定する方法を提案した [1]。これによって、人体モデルを利用した場合、理論上同一計算量での関節角度の推定精度が4.61倍向上した。

しかし、この方法では、狭められた関節角度の自由度範囲内で同一のマッチング評価値が得られる場合がある。関節角度はその範囲内の任意の値を採用し得る。この重複性を解消するための方法について、本稿で考察する。

3 マッチング評価法の考察

いま、あるフレームのある剛体部分についてマッチング評価を行うものとする。簡単のために、ここでは一軸の関節を考える。短時間内における剛体部分の運動を、等角速度運動と等角加速度運動の合成と考えると、探索すべき関節角度の範囲は以下の式で狭められる。

\[|r_s(t+\Delta t) - \langle v_s(t) \rangle| \leq \Delta R \]

ただし、\(r_s(t) \) は時刻 \(t \)における関節 \(a \)の角度、\(v_s(t) \) は角速度を意味する。\(\Delta R \) は、運動の種類によって異なる値をとるが、人体の場合は、その上限は一定であると観察される。

4 実験

実験の一例として、男性の36フレームの歩行運動に適用した結果の一例を図1、図2に示す。ただし、\(\Delta R = 6.0 \) 度、\(s = 1.0 \) 度である。図1の左のような状態から腕などが剛体と重複し始めるが、図2のように重複の終了後も正しく推定できている。

5 おわりに

本稿では、人体の動作推定において慣性を重視づけとしてマッチング評価値をすることにより重複に影響されにくい動作推定法について考察した。今後は、刚体部分に剛体の重複中にある加速度が大きく変化する場合に対応していく予定である。

参考文献

図1 重複前
図2 重複発生後