5K-08 オプティカルフローによるイメージモザイキングの可否判定

宮田真嗣† 千葉直樹† 亀田能成‡ 美濃導彦¶
† 京都大学工学部情報学科
‡ 三洋電機（株）
¶ 京都大学総合情報メディアセンター

1 はじめに

複数の画像を疎ぎ目なく合成して、1枚の大きな画像を生成する技術をイメージモザイキングという。その処理は、(1) 重なり部分の抽出、(2) 特徴点の抽出と追跡、(3) 射影変換行列を求め画像を変換、(4) 合成である。従来、イメージモザイキングの可否判定には、射影変換行列により画像を変換し、重なり部分の誤差を閾値処理する手法が取られている[1]。この手法では、上記の処理を最後まで行わないと、判定ができないという問題点がある。特に、イメージモザイキングができるものとできないものが混在する画像列を扱う場合、最後まで行わずに判定を行って、イメージモザイキングできる部分だけを抽出することが望ましい。

イメージモザイキングできるには、撮影対象が単一平面であるならカメラの運動は自由であるとか、カメラの運動を焦点中心の回転にすれば、撮影対象は自由である、という条件がある。本研究では、ビデオカメラで撮影して得られる時系列画像を扱うことを考えるので、カメラの動きは自由である方がよい。そこで、可否判定対象とするカメラの運動モデルを定め、各モデルでのオプティカルフローの分布の特徴を解析し、射影変換行列を求めないまま、可否判定を行う手法について述べる。

"Testing the possibility of Image Mosaicing Based on Optical Flow"
MIYATA Shinji, CHIBA Naoki, KAMADA Yoshinari, and MINOH Michihiko
† Department of Informatics and mathematical science, Faculty of Engineering, Kyoto university
‡ SAN YO Electronic, Co., Ltd.
¶ Center for information and multimedia studies, Kyoto university

2 カメラの運動モデルとオプティカルフローの分布の解析

2.1 イメージモザイキングの可否判定の対象となるカメラの運動モデル

可否判定の対象となるカメラの運動モデルとして、通常のビデオの撮影の際によく見られる動きの中で、基本となる動作を選択する。それは、画像平面を含む平面上の平行移動、焦点中心の回転、ズーム、光軸に沿った前後移動、光軸回りの回転運動の5つである。この内、平行移動と前後移動については、撮影対象を単一平面とする。

2.2 オプティカルフローの分布の特徴と可否判定

各運動モデルでのオプティカルフローの分布の特徴を図1に示す。重なり部分の画像座標を \((p, q)\) とする。1-1 は平行移動または焦点中心の回転運動で、画像全体に、向き、大きさが同じオプティカルフローが一様に分布する。1-2 はズームまたは前後移動で、ある \(1\) 点を中心に放射線状に伸びている。1-3 は光軸回りの回転運動で、ある \(1\) 点を中心に円を描くという特徴がある。

図1：オプティカルフローの分布
次に、判定法について述べる。重なり部分において図2の2-1のように、m x n 個のオプティカルフローを求めめる。2-2のようにオプティカルフロー f を p, q 方向に分解し、それぞれ u, r とする。判定には、オプティカルフローの p, q 軸に対する相関関係を利用する。例えば、2-1で q = r において、(i, r) (i = 1, 2, ..., m) における u を横軸に、縦軸に u の値を取ると、線形相関の関係から回帰直線が描かれる (2-3)。直線の傾き、つまり回帰係数は、どの横方向についても異なる。各モデルの u, r の p, q 方向についての回帰係数を同様に調べると、表1のようになる。検定の正, 負, 0 は回帰係数の符号を示す。相関関係により得られる回帰係数と相関関係を関連判定する。

![図2: 判定法](image)

表1: 各モデルにおける回帰係数の符号

<table>
<thead>
<tr>
<th>カメラの運動モデル</th>
<th>p 方向</th>
<th>q 方向</th>
</tr>
</thead>
<tbody>
<tr>
<td>平行移動、左回転</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>平行移動、右回転</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3 実験

提案手法と、従来の手法の計算時間を比較するため、平行移動、焦点中心の回転運動、ズームイン、前移動の場合について、それぞれ10枚の画像を連続して判定を行った。全ての画像の位置合わせから可否の応答が返ってくるまでにかかった時間 (秒) を表2に示す。

![表2: 実験結果 (秒)](image)

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>提案手法</th>
<th>従来の手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平行移動</td>
<td>52.39</td>
<td>67.58</td>
</tr>
<tr>
<td>焦点中心の回転運動</td>
<td>51.89</td>
<td>69.55</td>
</tr>
<tr>
<td>ズームイン</td>
<td>51.12</td>
<td>70.77</td>
</tr>
<tr>
<td>前移動</td>
<td>52.03</td>
<td>69.71</td>
</tr>
</tbody>
</table>

4 まとめ

オプティカルフローの分布からイメージモザイキングの可否を判定する手法について述べた。実験では、提案手法により、射影変換行列を求めずに判定できることを示した。今後は、5つのカメラ運動モデルが、実際のカメラ動作をどのくらい参考しているのかという有用性を示し、提案手法による可否判定の誤り率を調べていく。

参考文献
