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ABSTRACT

Due to a large size of lecture theaters and associated mul-
tiple sound sources, the common beamforming techniques
cannot be straightforwardly applied in those environments.
Other difficulties include significant propagation delays be-
tween the microphones and the directionality mismatch be-
tween speakers and microphones. These problems are par-
ticularly emphasized in the distance lecturing environment
equipped with a large scale microphone array (distance be-
tween neighboring microphones 1.86m). To reduce some of
these effects, we propose a technique based upon a combi-
nation of noise reduction and active speaker tracking. Ex-

periments in a real teleconferencing environment are pro-
vided to support the analysis. Fig. 1. The classroom at Media Center of Kyoto Univer-

sity designed for distance lectures and equipped with mi-

crophones installed over the students area to capture their
1. INTRODUCTION activity.

The core of modern multimedia distance learning and vir-

tual presence (teleconferencing) applications rests upon theapture of an active speaker and the problems associated
clear and realistic capture of the sound signal. An ideal so-with a large size of the classroom, a convenient solution
lution should preserve the spatial hearing comfort, togetherwould be a ceiling—mounted large—scale microphone array,
with the robust reduction of environmental and other noise which covers the area occupied by the audience. Since the
signals. In distance learning applications, therefore, it is an microphones mounted above the students inevitably capture
imperative that the voice of a lecturer and students in the and often enhance both thenspokeractivity and noise, it
classroom be captured at a level that provides features folis of crucial importance to employ appropriate filtering and
clear understanding at the far end. To that cause, it is de-sound separation techniques, which is the focus of this pa-
sired that every participant in a distance lecture is equippedper. To start off with, in the next section we discuss prepro-
with a portable microphone placed close to the mouth. On cessing modules for localization of the active speaker in the
the other hand, for a large number of participants, e.g. theclassroom.

microphone could be passed among the students, but such
a solution would seriously hamper the flow of discussion,
whereas the recording/transmission system could be disturb-
ing to the participants. To balance the need for the voice

2. NOISE REDUCTION AND SPEAKER
LOCALIZATION
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be described as follows. Consider two or more participants ‘ ‘ Orginal noisy signal
in a remote multimedia session who would like to have a  **
trouble free and realistic communication. Positions of the
participants in the remote room are arbitrary within the area
where the sound can be physically captured. The rooms -oos
themselves can be equipped with air conditioners or other -oz
devices generating unwanted sound sources and noise. Ad-—°1
ditionally, the participants may use portable devices (e.qg.

laptops) that are the sources of specific local noise.

2.1. Signal predictability for speech enhancement 005

The significant distance between the microphones causes _0‘0:
them to capture much of "local” noise not shared across the _,
microphone array. To remove such local interferences that | °
usually degrade the performance of speaker localization al-
gorithms, we employ linear adaptive predictors whose fil-

ter lengths, for simplicity, are Iimite_d to se\_/eral tapg. The Fig. 2. Top diagram: the noisy original speech signal, cep-
output of every section of an adaptive predictofk), i = strally preprocessed fov,, (k) estimation. Bottom diagram:
L,..., N, where N is the number of microphones in the he cepstrally evaluated speech activity identifier used for

array, is assgciated witii a prediction eregfk) [1]-' The NLMS adaptation X, (k)) plotted over the preprocessed
operation of linear adaptive predictors, together with the co- speech.

efficient updatew; (k)) is given by

ci(k) = si(k) — z:(k), (1) As mentioned above, these techniques require a very good

N ) voice activity detector and are prone to causing side effects.

zi(k) = si(k — dwi(k) = s} (k)wi(k), (2)  We therefore use this technique only to detect the possible

j=1 sound activity which has a different spectral image from the
Wi (k + 1) = w; (k) + p(k)e; (k)s; (k), 3 noise spectrum (speech, music, etc.). The spectrum of such

( ) (k) + ulk)e ()\)&(;)) ® a signal with noise subtracted can be expressed as
p(k) = wig 4)
i (F)ll2

S@)f = X@F=IN@F, it IX @F > N @),
. . . . 1 0 otherwise
The dynamical learning rate adaptation parameigik) is

the critical variable toward catering for the unknown dy- s L (5)
namics of the recorded signals. Since our desire is to en- N order to remove the "stationary—in—time” interference
hance voices of students from the auditorium area that ask(stable noise) from a time window at tinte the power of
guestions during the lecture, the focus of the following anal- the subtracted signél.; can now be evaluated over the time
ysis is to identify the speaker location and efficiently sup- window and compared with the total (with noise) power
press the additive noise. To that end, there are known ap-g, , , to update the the value of, (k), as

proaches in the open literature, from which for an accu-

rate identification of the noise region, a technique called the

spectral subtraction technique might be employed [2]. Such 1y — Ees(k)/Etotar(k),  Ees(k) = Vroom, ©6)
techniques, however, although very effective, might intro- ~* const, Ees(k) < Vyoom,

duce the so callethusical noisewhich contributes to a very
tbfad aluditg_rty sen?ratltt)n afl‘_d conséaque?]tly crt()elates a ratherlaqh the above equationZ, (k) is the cepstrally subtracted
ificial auditory effects. To avoid such problems, several _. . , .
adaptive step size normalized least mean square (NLMS)S'gnal energy an(Et"t“l(k) Is the total energy in the win-
based algorithms have been proposed [3, 4]. For our ap-dows around time sample [2]. Value v,.,m reflects the
proach, we employ speech identification from noisy record- background room noise is calculated during the system in-
ings with the adaptive step size for NLMS, (&), proposed  stallation and initialization. The value of this threshold may

in Eq.4, which is obtained from the cepstral voice activ- be also evaluated before the distance lecture session starts.
ity detector. Speech and noise are assumed to be mutuallyrg speed up the filter coefficient adaptation for the time win-
statistically independent, therefore the spectrum of the en-4,vs where voice activity is not detected, we opt for the use

hanced speech Sigfﬁ' (w)‘ can be obtained from the noisy  of constant\,, (k) from Eq.4. An illustrative example of the

version| X (w)|, after subtracting the noise spectrum esti- effects of speech activity evaluation and (k) estimation
mate|N (w)|, calculated from regions labelled as noise [2]. is shown in Fig.2.
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can be seen on the lower left side plots of the above figure.

Fig. 3. The original recordings from 16 microphones lo-

cated on the ceiling of a classroom. 3. LOCAL BEAMFORMING AS A SECOND STEP
OF SPEECH ENHANCEMENT
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Fig. 5. The overview of the final step of the local beam-
former based upon the predictability of the speech signal.

2.2. Active speaker localization After the localization of the speaker position, we perform
The preprocessed (locally filtered) sound waveforms are nov&he final step of speech enhancement. In the first step of

much better suited for the next stage: active speaker IocaI-Speaker localization, our approach locates just the three nei-

ization (compare the plots of the raw data from Fig.3. and gg?g::g Lnéfroeper;]opes \(’)V'thcl:sn.:ge:]% (:(La);]sc;r?(ler;cgsthe lt% ng_esr:t
their filtered versions from Fig.4). Since the high power ! W WO 0pposi crop 'S up '9

noisy interference is removed, in this stage a voice detec—Lnee;ﬁ::c;mgg Ceatherojéialézg Isgaé'rﬁnﬁ é%en;i'::gg ,t:e]zedlglgals
tor with delay and speech loudness estimation facilities can g app ployed, Y

oo . . between microphones and resulting convolutive mixtures
be employed. For the estimation of the time frames contain- o . -
. . . . are no longer very significant. The detailed derivation of
ing spoken utterances we employ the technique described Iqhis approach can be found in [6]. Here, we present only the
ITU-T P.56 [5] recommendation. Only the time frames with ' '

active voice are considered for postprocessing. To speed ué:g?loitgigi;fstg;i::jggri;im’rgvdr?(iggbﬁ)ﬁrf%g?;t?gizfse)gaacz_a
the search for §UCh fram_es, iny nei.ghboring microphonesb”nd sig?lal extractionpschsme is shoglvn in Fig.5. .To suit

cnces, Afer he adaptie preprocessing, the localzaton(® aPPTOach proposed in this paper, three (rangulation
unit was able to detect the correct three neighboring micro-lc;lf(esggﬁgidﬁgaﬂggfgfgf;l;ém'nctzt'ggct:fng'gshi?]i;aﬂ\g%_

phones. The result is presented on Fig.6. with signal and™_ " . . o
tracking diagrams before and after adaptive noise reduction.Catlon of the speaker is "".”e‘."‘.dy |dent|.f|ed, the delays of
captured speech are not significantly different. To remove

The position localization is accurate and remains stable as S . .
the remaining interferences in the second processing step,

we employ a combined beamforming and linear prediction
#16 #15 #14 form [6], given by

M N M
b y(k) =Y bi(k)ai(k) =Y pi(k) D bilk — j)zi(k— ),
i=1 j=1

#13 #12 #10 i=1

#11
()
W W M A detailed derivation of this approach can be found in [6].
9 #8 #7 #6 #

Here we present only the final steps that lead to the update
of the adaptive beamformer, given by

# 5

el bk + 1) = b(k) + p(k)y(k)b(k), ®
where: \

o e e e (k) = —>— (©)
% (k)2

Fig. 4. The filtered (denoised) recordings from 16 micro- The update of a postprocessing linear predictor that is com-
phones as the input to speaker localization. bined with the beamformer in order to reduce the possible
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Fig. 6. Three candidates for beamformer input. Since the Fig. 7. The example of final single channel speech output
first step of noise reduction was set to localize the speakerfrom the walking speaker (this is usually the most difficult
position, its contains still noise, but the localization pro- case). The upper plot presents the composition of origi-
cedure might be performed already accurately. The threenal signals according to speaker location presented on the
above rows of plots present the acceding candidates forlower plot (position was localized after first stage of speech
steady speaker. The locations shown on right sides are versignal preprocessing). The middle plot shows the final out-
random. The there lower rows of plots present the prepro- put of our approach with effectively suppressed non-speech
cessed speech (the noise is still present) but the locationgegions. The path of walking speaker was correctly recon-
presented on the right sides are steady and coherent, sugstructed from the microphones locations.

gesting three neighboring microphone all the time.
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