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Facial Micro-Expression Detection in Hi-Speed Video Based on
Facial Action Coding System (FACS)

Senya POLIKOVSKY†a), Student Member, Yoshinari KAMEDA†, Senior Member, and Yuichi OHTA†, Fellow

SUMMARY Facial micro-expressions are fast and subtle facial motions
that are considered as one of the most useful external signs for detecting
hidden emotional changes in a person. However, they are not easy to de-
tect and measure as they appear only for a short time, with small muscle
contraction in the facial areas where salient features are not available. We
propose a new computer vision method for detecting and measuring tim-
ing characteristics of facial micro-expressions. The core of this method is
based on a descriptor that combines pre-processing masks, histograms and
concatenation of spatial-temporal gradient vectors. Presented 3D gradient
histogram descriptor is able to detect and measure the timing characteris-
tics of the fast and subtle changes of the facial skin surface. This method
is specifically designed for analysis of videos recorded using a hi-speed
200 fps camera. Final classification of micro expressions is done by using a
k-mean classifier and a voting procedure. The Facial Action Coding System
was utilized to annotate the appearance and dynamics of the expressions in
our new hi-speed micro-expressions video database. The efficiency of the
proposed approach was validated using our new hi-speed video database.
key words: facial motion analysis, high speed camera, video descriptor

1. Introduction

The increase of extreme violent actions around the world
requires new technological solutions that are helpful in the
detection of hostile intent and prevention of those actions.
The combination of computer vision and psychology has the
potential for developing such technology.

Facial micro-expressions are brief, involuntary expres-
sions that appear when emotions are concealed or repressed
and usually occur in high stakes situations [1]. Two inde-
pendent research groups, Ekman and al. [1] and Porter and
al. [2] found that facial micro-expressions are the most im-
portant nonverbal sign of hidden emotions and can be used
for lie and danger demeanor detection [3], [4]. Not only the
detection but also the timing characteristics of facial muscle
motions during micro-expressions are considered as impor-
tant clues. Those characteristics have high potential to be
used for psychological and behavioral analysis [1].

However, there are several technical issues that make
micro-expression recognition and characterization difficult.
First, they have a short duration that varies from 1/3 to 1/25
seconds, second they are caused by a small muscle contrac-
tion inducing little changes in the skin texture, all this mak-
ing them almost imperceptible. Traditional computer vision
approaches such as Active Appearance Model (AAM) or
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Gabor descriptors would not be suitable for detecting such
changes.

The two main targets of the research initiated with this
work are to propose a method for both detection and charac-
terization of micro-expressions. Due to the short duration of
micro-expressions, attempting to analyze such motions us-
ing 25 fps cameras would result in approximately 5 frames
for an entire expression. Such number of frames would not
be sufficient in order to extract the timing characteristics of
the expression.

The solution we propose uses a “flow approach” that
was specially designed to analyze videos from 200 fps hi-
speed camera. Our flow approach is based on 3D gradi-
ents (spatial-temporal) descriptors that measure the changes
between following frames. The descriptor proposed in this
paper combines pre-processing masks, histograms and con-
catenation of 3D gradient vectors, providing both classifica-
tion and motion characterization of micro-expressions. In
addition, the time characteristics can be measured directly
from the descriptor values. Furthermore, use of gradient
descriptors provides an appropriate solution to address the
noise induced by the use of hi-speed video.

In addition to our method, we introduce a FACS anno-
tated new hi-speed video database that will be extended in
the future for analyzing variety of micro-expression motion
characteristics. This database target to provide an important
instrument for researchers in the field of psychological and
behavioral analysis that are using computer vision technol-
ogy for analysis automatization.

The proposed method contains following steps: First,
the face in the video is divided into facial regions and cor-
responding video cubes are extracted. Facial regions are
defined in accordance with the facial action coding system
(FACS) [5]. Second, motion in each region is described us-
ing a 3D-Gradient orientation histogram descriptor that is
based on partial derivative vectors. Figure 1 presents a fa-
cial video cube along with partial derivative vectors. Finally,
micro-expression recognition is achieved through a k-mean
classifier and weighted voting procedure. Figure 2 shows an
overview of the proposed method.

The structure of the paper is as follows: In Sect. 2 we
discuss related work. Detailed descriptions of our methods
in Sect. 3. In Sect. 4 our new database of micro-expressions
is presented. Experimental results are discussed in Sect. 5.
Conclusions and future work are presented in Sect. 6.
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Fig. 2 Our micro-expression detection method consists of four main parts: Pre-Process, Gradient
Vector Calculation, Orientation Histograms Calculation and AUs Detection. The Pre-Process part con-
sists of video cube masking, Gaussian smoothing and normalization. In the Gradient Vector Calculation
part, first δvx, δvy, and δvx gradients cubes and then their magnitudes mxy(x, y, t), myt(x, y, t), mxt(x, y, t)
and orientation θxy(x, y, t), θyt(x, y, t), θxt(x, y, t) cubes are calculated. In the Orientation Histograms
Calculation part, first an 8 bins histogram δvyx and two 12 bins histograms δvyt and δvxt are calculated,
and then all the histograms are concatenated into one 32 bins description vector. This 32 bins vector
represents the motion between every frame in the video v(x, y, t). Finally in the AU Detection part the
final micro-expression recognition is made through a k-mean classifier and a weighted voting procedure.

Fig. 1 Visualization of the 3D video cube v(x, y, t) in the Between Eyes
area and partial derivative vectors of one pixel in the cube δvxy, δvyt , and
δvxt corresponding to the xy, xt, and yt surfaces. Our 3D-Gradient orienta-
tion histogram descriptor combines all the partial derivatives vectors from
all the pixels in each frame.

2. Related Work

In this section we summarize facial expression analysis
methods and spatio-temporal descriptors to detect motion
in video sequences.

2.1 Automatic Facial Expression Recognition Systems

General automatic facial expressions recognition systems

consist of three steps: (1) face acquisition, (2) facial data ex-
traction and representation, and (3) facial expression recog-
nition. Face acquisition consists of automatic detection and
tracking of the face in the input video, in some cases ex-
traction of the face direction is part of this step. For fa-
cial data extraction and representation for expression analy-
sis, two main approaches exist: (a) geometric feature-based
methods and (b) appearance-based methods. (a) Geometric
facial features methods represent facial expressions by re-
constructing the approximate shape of the face based on the
location of facial feature points (such as mouth corners, eyes
corners, eyebrows edges and etc. . . ). A feature vector stor-
ing these feature points represents geometry the face [2]. For
example 20 facial feature points have been directly tracked
using a particle filter [6]. This approach gives good results
for several facial expressions, however some subtle motions
such as micro-expressions that can only be observed by skin
surface changes cannot be detected.

In (b) appearance-based methods, image filters, such as
Gabor wavelets, are applied to either the entire face or spe-
cific regions in the face. This method was applied to spon-
taneous facial motion analysis [7]. More recently Gabor fil-
ters were replaced by haar-like features providing similar
recognition rate with less computational load [8]. However,
both methods are based on analyzing the video frame by
frame, without considering motion between the frames. In
addition, applying this approach for facial surface analysis
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requires large database for training more than 0.6 million
Gabor filters.

2.2 Active Appearance Model and Active Shape Model

Recently, advanced research results were reported on Ac-
tive Appearance Model (AAM) by the Kanade group [9].
AAM combines texture and shape analysis. However, there
are two disadvantages of AAM that makes them inapplica-
ble for our research setting. First, this approach requires an
extensive database with a large amount of manually tagged
points on the face area. Second, the accuracy of facial fea-
ture tracking significantly decreases when applied on faces
that were not included in the training set [10]. A similar ap-
proach is the Active Shape Model (ASM) which combines
a point distribution model together with a local appearance
pattern for every point. Although it is less accurate than
AAM, it is provides more robust results on faces which were
not in the training set. Additional detail on AAM and ASM
can be found in [10].

While AAM / ASM are proven to have good perfor-
mance in detecting regular expressions where facial struc-
ture has a significant deformation, they are not suitable for
detecting a subtle and low muscle contractions such as dur-
ing micro-expressions. For example a micro-expression
smile can be observable only by few wrinkles on the skin
surface above the cheeks. Futhermore Marks [11] proved
that in cases the texture changes are more significant than
changes in shape, flow approaches have better performance
than template approaches such as AAM and ASM. There-
fore 3D descriptor approach can be considered more suitable
for micro-expression detection.

2.3 3D Descriptors

2.3.1 Spatio-Temporal Local Descriptors

Concept of motion descriptors were introduced by Laptev
for automatic event detection in videos [12]. Dollar [13]
compared action recognition in videos using local descrip-
tors, such as normalized pixel values, brightness gradients,
and windowed optical flow. Experiments on three datasets:
facial expressions, mouse behavior, and human activities,
showed best results for gradient descriptors. In this method,
the gradient descriptor was computed by concatenating all
gradient vectors in a region, leading to rough descriptor. As
a result more complicated and subtle motions such as micro-
expressions can not be descried.

A more advanced descriptor was proposed by
Scovannere [14], who used an extension of the SIFT de-
scriptor for 3D data. After the spatio-temporal gradient vec-
tors are computed for each pixel, their orientation quantiza-
tion in polar coordinates is done. This leads to singulari-
ties at the poles since bins get progressively smaller closer
to them (like the longitude and latitude grid of the globe),
which leads to non uniform quantization. Polyhedrons were
proposed as a possible solution to the singularity problem

and the gradient vector being computed for sub-blocks and
not for every pixel [15].

Both previous methods have the benefits of a general
descriptor, but are not suitable for precise measurements of
time characteristics due to the lack of connection between
the values of the gradient histogram and the actual facial
movements making. Review of algorithms for motion clas-
sification in video, using 3D gradient descriptors can be
found in [15].

2.3.2 3D Descriptors for Facial Expression Analyis

Pantic group proposed the use of dynamic descriptors for
analysis of facial texture changes in videos [16], [17]. They
also compared Motion History Images (MHI) and Free-
Form Deformations (FFDs) descriptors, GenleBoost being
used as a classifier [16]. In addition, this work defines an
approach for comparing results in expression phase detec-
tion. In [17] the family of local binary pattern descriptors
for FACS AU detection are compared.

The main focus in these works is the detection of the
regular facial expressions, where the algorithms and the
capturing systems were based on regular speed cameras of
25 fps. However, the analysis of micro-expression requires
adaption of the descriptor to subtle and imperceptible mo-
tions as well as much higher sampling rate.

The descriptor we propose is specifically adapted to
facial movement analysis of micro-expressions and is able
to describe separately the surface of the face and the facial
motion. In addition it allows the examination of the facial
movement’s timing characteristics though direct observation
of the descriptor values on the gradient’s histogram. The use
of 3D gradient histograms descriptors using hi-speed cam-
era for micro-expression detection as well as the creation of
a new hi-speed video database for validation is novel. In
this work 200 fps presents a suitable tradeoff between noise,
accuracy and camera price. Use of hi-speed camera poses
some difficulties that we propose to solve through our de-
scriptor.

3. 3D Gradient Histogram Descriptor

In this section we present the procedure used to calculate
the 3D gradient histogram descriptor for micro-expression
detection. In general, micro-expressions are directional de-
formation of certain facial skin textures, starts from non-
expression (known as neutral state) to pick of the expres-
sion (contraction) and back to neutral state in continuous
way. By detecting the skin changes in particular direction
across time we can detect and identify the corresponding
expression. In this manner, the 3D gradient histogram are
used to describe the spacial-temporal changes of the facial
skin. The calculated descriptor values serve to classify the
changes acroses AU tags.

The proposed algorithm contains three main phases:
First, extraction of twelve facial video cubes (Sect. 3.1).



84
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.1 JANUARY 2013

Fig. 3 Facial region selection. a.) Facial points marked on the first frame
of the video. b.) Calculation of the facial regions’ size and position. c.) 12
selected facial regions that will be used in further analysis.

Second, a pre-processing step that includes cube normal-
ization, smoothing and masking of uninformative pixels
(Sect. 3.2). Third, computation of the 3D gradient orien-
tation histogram descriptor for each video cube (Sect. 3.3).

In Sect. 3.4 the classification process is described, in
which all the frames in the cube are classified into one of of
AU tags, based on their descriptors. The final identification
of the micro-expressions is made using a voting procedure.
Finally, in Sect. 3.5 we present parameters of our descriptor.

3.1 Facial Region Selection

Estimation of whole facial muscles structure and movement
simultaneously is difficult and high computational task. In
addition, as the appearance of micro-expressions can be
spotted by observing certain facial regions, we separate the
analysis of the face into 12 facial regions.

Following the facial action coding system (FACS) [5]
that decomposes facial expressions in terms of 46 com-
ponent movements called Action Units (AUs), we select
the most representative facial regions in terms of micro-
expressions.

In order to estimate each face muscle motion precisely,
each facial regions is defined so that its appearance is af-
fected only by a limited number of muscles. Hence, dur-
ing the classification step, every region will hold a limited
number of classes to distinguish. The regions are selected
manually using the following procedure:

First, 12 facial points are marked on the first frame of
the input video as shown in Fig. 3 a. The positions of the
facial points were defined by based on [9] and [6] works.

Second, the average size of the eyes and the center lo-
cation for each region are calculated based on the selected
facial point position as shown in Fig. 3 b. Based on the por-

Fig. 4 Video cube of the “Eye” region extracted from the 200 fps video
sequence.

trait drawing guidelines [18], eye size has an important pro-
portional value in the human face, as the size of facial fea-
tures and their position can be regularized in proportion to
the eye size. More information on locations and proportions
of facial regions is given in [19]. The size of the regions
is defined as slightly bigger than the actual region to make
sure that, in spite of small face movements and rotations, the
important features will stay inside the region.

Finally, 3D facial cubes are extracted for all the facial
regions (Fig. 3 c). The units for the x, y and t axes of the cube
are “pixels”, “pixels” and “frames” respectively (Fig. 4).

3.2 Pre-Processing

Our descriptor includes three pre-processing procedures as
follows: First, as expressed in Eq. (1), each video cube
vraw(x, y, t) is multiplied by a weight mask M(x, y, t) that re-
move uninformative pixels from the descriptor calculations.
There are several ways to obtain the mask cube M(x, y, t).
One, is to learn the weights for the mask based on statistical
information using a training set of videos from a database.

M(x, y, t) =

{
w informative pixels
0 uninformative pixels

vmask(x, y, t) = M(x, y, t) ◦ vraw(x, y, t)
(1)

◦ being the Hadamard product, which is an element wise
multiplication.

v(x, y, t) = G3D(x, y, t, σx, σy, σt) ∗ vmask(x, y, t) (2)

Another option is based on face tracking algorithms in
which the weight mask is updated dynamically in correspon-
dence with the location of the face in the video cube. A third
option is to use a static mask specially designed for every
cube. This option was implemented in this paper due to it
simplicity and the fact that the face position doesn’t signifi-
cant change in our video database. Binary masks were used
to set all uninformative pixels to “0” and all informative pix-
els to “1” (see Fig. 5 a).

After the masking, the video cube is smoothed in the
spatial and temporal directions using a 3D Gaussian G3D()
kernel with σx, σy, σt parameters (see Eq. (2)). One of the
reasons for applying the Gaussian filter is the fact that the
use of a hi-speed camera produces higher level of noise com-
pared to regular cameras. Sigma values were selected in ac-
cordance with the lighting conditions of the input videos.
The last step of the pre-processing is a cube normalization



POLIKOVSKY et al.: FACIAL MICRO-EXPRESSION DETECTION IN HI-SPEED VIDEO
85

Fig. 5 a.) Weight mask images that were defined for every video cube,
“Black” pixels stand for weight value ‘0’ and “White” pixels for ‘1’.
b.) Corresponding video cubes for the masks.

that brings all the pixel values between 0 and 1 Fig. 2 illus-
trates all the steps in the Pre-Processing section.

3.3 3D Orientation Gradients Histogram

In this section we describe the 3D histogram descriptor cal-
culation. First lets consider the 2D case, where I(x, y) is the
image and δIx(x, y), δIy(x, y) are the image’s partial deriva-
tives. The gradient magnitude and the orientation of each
pixel is then defined by Eq. (3).

mx,y(x, y) =
√
δIx(x, y)2 + δIy(x, y)2

θx,y(x, y) = tan−1(δIx(x, y)2/δIy(x, y)2)
(3)

In the 3D case of video V(x, y, t), where the third di-
mension is time, we selected the gradient representation
specifically adapted to facial micro-expression movement
analysis.

The first step in the 3D descriptor calculation given a
video cube v(x, y, t), is the calculation of the partial deriva-
tives along the x, y, and t axes. Then, for each couple of
partial derivatives (δvx, δvy), (δvy, δvt), and (δvx, δvt), corre-
sponding magnitude mxy(x, y, t), myt(x, y, t), mxt(x, y, t) and
orientation θxy(x, y, t), θyt(x, y, t), θxt(x, y, t) cubes are com-
puted using Eq. (4). A diagram of the gradient vector calcu-
lation can be seen in Fig. 2.

mxy(x, y, t) =
√
δvx(x, y, t)2 + δvy(x, y, t)2

θxy(x, y, t) = tan−1

(
δvy(x, y, t)2

δvx(x, y, t)2

)

myt(x, y, t) =
√
δvy(x, y, t)2 + δvt(x, y, t)2

θyt(x, y, t) = tan−1

(
δvy(x, y, t)2

δvt(x, y, t)2

)

mxt(x, y, t) =
√
δvx(x, y, t)2 + δvy(x, y, t)2

θxt(x, y, t) = tan−1

(
δvx(x, y, t)2

δvt(x, y, t)2

)

(4)

In this work δvxy = {mxy, θxy} represents the shape of
the surface, δvyt = {myt, θyt} represents the vertical changes,
and δvxt = {mxt, θxt} represents the horizontal changes.

The gradient orientation histogram for every frame in
the δvxy, δvyt and δvxt cubes are then computed.

The gradient orientation histogram of the shape of the
surface δvxy contains 8 bins (Fig. 6 a). All the vectors that

Fig. 6 a.) Shape of the surface δvxy gradient orientation histogram bins.
The vectors on the histogram illustrate the bin quantization process. All the
vectors that appear inside the threshold (dotted line circle) will be excluded
from the histogram summation. b.) Eyebrows during neutral expression
and c.) Eyebrows during micro-expression AU4 activation.

Fig. 7 δvyt and δvxt orientations histogram are split to 12 equal size bins
and additional 2 “No changes” bins. “No changes” bins are not used in
the descriptor calculation. All the vectors that appear inside the threshold
(dotted line circle) will be excluded from the histogram summation.

belongs to the same bin are added, except for vectors of
very small magnitude which can be considered as informa-
tive. By setting 8 bins we can characterize the appearance
of skin wrinkles and other texture changes in 8 directions
(up, up-left, left, etc. . . ). Each bin is wide enough to give
the flexibility to deal with small rotations of the face.

The changes of the skin surface can be observed by ex-
amining the changes in the gradient vectors’ density, magni-
tude and orientation. The computation of vectors histogram
provide stable quantization values for our descriptor.

Illustration of our descriptor is presented in the follow-
ing example, the eyebrow lowering expression is described
as Action-Unit 4 (AU4) by FACS [20]). In Fig. 6 b. we can
see the eyebrow area during a neutral expression and Fig. 6.
shows the activation of AU4. Figure 6 b and Fig. 6 c illus-
trate the changes of the gradient magnitudes and orientation
of δvyx during the micro-expressions.

The gradient orientation histograms for δvyt (vertical
changes) and δvxt (horizontal changes) is shown in Fig. 7.
The figure also illustrates the bins’ separation between the
subgroups that are used only for explanatory purpose. As
the separation between δvxt and δvyt surfaces are identical,
the following explanation applies to both cases.
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Fig. 8 Example of four gradient vectors in yt surface that are associated
to subgroups a. “No changes”, b. “fast changes”, c. “mid changes” and
d. “slow changes”.

Radial segmentation is done as follows: Vectors corre-
sponding to no or small changes between frames are elimi-
nated from descriptor calculation. These vectors point ver-
tically to a positive or negative direction, resulting into two
“no change” bins. Changes in the x or y direction and in the
time direction t may correspond to a positive or a negative
direction, resulting in four quadrants. These four quadrants
are further split into three parts of equal size, resulting in 12
additional bins, for a total of 14 bins.

Each bin can be further described: “No changes” re-
gions contain all the gradient vectors whose change rate in
direction t is small, and they indicate no change between the
frames in the corresponding pixel. In addition we can say
that δvy (or δvx)) part of gradient vector in the “No changes”
regions was already included in the δvxy histogram, so we
did not include them in the δvyt and δvxt histograms (see
Fig. 8 a).

We define the “fast changes” subgroup as the group
containing gradient vectors which have small changes in ad-
jacent pixels along the y (or x)direction but have a significant
changes in t. This means that the corresponding pixels have
a significant change only in their intensity between frames
(see Fig. 8 b).

The “mid changes” subgroup contains gradient vectors
with similar change rate in y (or x)) and t directions. (see
Fig. 8 c).

The “slow changes” subgroup contains gradient vec-
tors that indicate a strong change in y (or x)) direction and
relatively small change in t (see Fig. 8 d).

In summery, we consider that vectors in the “no
changes” regions indicate no or little motions in the face
between the frames. Vectors inside “fast changes” subgroup
indicate big change in pixel intensity between the frames
and can represent motions such as blinking and eye move-
ments. The “mid changes” and “slow changes” subgroups
vectors describe motions such as the appearances or disap-
pearances of skin folds on the face surface. Similarly as in
the δvxy histogram, all vectors whose size is smaller than

a threshold value are excluded from the histogram summa-
tion.

The final step is the concatenation of the δvyx, δvyt and
δvxt histograms from the same frame. Consequently the mo-
tion between every frame in the video v(x, y, t) is described
by a 32-dimensional descriptor vector. Each value in the de-
scriptor vector is the sum of the magnitudes of the gradient
vectors in the corresponding bin. A scheme of the orienta-
tion histogram calculation can be seen in Fig. 2.

We can note that δvxt and δvyt correspond to change of
intensity of pixels in both time and spacial direction. As we
work under the assumption of constant lighting and temper-
ature conditions, and as head and other movements happen
at a speed negligible compared to those of micro-expression,
we can consider that changes in intensity of pixels in subse-
quent frames correspond to changes in the facial skin surface
caused by the motion of facial features.

3.4 Descriptor Classification and AU Detection

The detection of AUs is done in two steps, first, a descriptor
classification and second, a voting procedure.

First, after calculating descriptors for every frame in
the video cube v(x, y, t), all the frames are classified based
on the k-mean algorithm.

The descriptor classification procedure was as follows:
Based on leave-one-subject-out cross-validation approach
we cluster the training data using the k-mean algorithm, the
number of clusters is determined by the number of AU that
appeared in each one of the video cube types. Next, the label
for each cluster is extracted based on the closest 50% of the
points to the cluster center. Finally, the descriptor is classi-
fied according to its distances to the clusters calculated from
the training data. Euclidean distance is used during training
and classification steps.

The k-mean algorithm clusters both different AUs of
the video cube, and Onset, Apex, and Offset of each AU.
Onset, Apex, and Offset are phases of the micro-expressions.
Onset is the phase where muscles go from their neutral state
until they reach expressions’ Apex. In the Apex phase the
muscles sustain their contraction until the Offset phase. Dur-
ing the Offset phase the muscles relax and go back to there
neutral state.

In spite of of the simplicity of the presented approach it
provides adequate classification results. In addition, in gen-
eral in case of partial labeled data the use of semi-supervised
k-mean will be more suitable in comparison to other stan-
dard supervised classifiers.

Second, it has been shown in [19] that the presents of
some AU, compared to AU0 (neutral face), can be detected
with high accuracy. Moreover, frames that belong to the
Onset and Offset phases have higher accuracy classification,
in comparison to frames corresponds to Apex. We can as-
sume that frames during a full AU section (video sequence
containing Onset, Apex and Offset of the AU) belong to the
same AU or to the same AU combination. Based on this,
we attribute “phase weights” w to each phase in the voting
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Fig. 9 The final step of the voting procedure for an AU. The table rep-
resents the sequence of frames of AU4 classified using k-mean. The upper
row in the table presents weights that are associated with each frame. The
calculation underneath the table represents the voting procedure.

procedure.
After the first and last frames of the AU section were

detected and each frame in the section was classified, the
voting procedure is performed. First, each frame is associ-
ated with a weight value w based on its location in the AU
section. Then, we add the votes of the frames with the same
AU tag, finally the AU that gets the highest vote value is as-
sociated to the section. This process is illustrated in Fig. 9.

In order to set the values of the weight for the voting
procedure, first we observed in the frame-to-frame classi-
fication results (presented in [19]) that the descriptors cor-
responding to Onset and Offset phases were more reliable
than descriptors corresponding to the Apex phases. There-
fore we considered that the related weight of the Onset and
Offset phases should be higher. Furthermore, we observed
that the maximum ratio between duration of Onset, Apex,
Offset are of the order of 1/4, 1/2, 1/4 respectively. There-
fore setting a weight of value “2” to Onset and Offset frames
and of value “1” to Apex ensures that, in case of maximum
ratio and complete miss-classification of Apex frame, AU
will still be classified correctly. Different strategies for set-
ting the weight values were tested, however no significant
improvements in the classification results were observed.

In addition, in some cases during micro-expressions,
multiple Apex phases may appear, for example Neutral →
Onset → Apex→ Onset → Apex→ Offset → Neutral. Our
voting procedure is suitable for recognizing such cases.

3.5 Descriptor Parameters

This section summarises and discusses the tuning process of
the three groups of parameters of the proposed descriptor.

The first group of parameters is the the threshold val-
ues used for eliminating vectors of small magnitude from
the calculation of histograms corresponding to the δvxy, δvxt,
δvyt plans. The source of these vectors are highly grainy
textures such as skin with facial hairs, wrinkles, or freckles.
Due to the summation process during histograms calcula-
tion, a large amount of these vectors can influence the value
of the descriptor. The threshold values were determined by
maximizing, in cubes with highly grainy textures, the dis-
tances between descriptors of the frames corresponding to
the still face and descriptors of the frames corresponding to

facial expressions.
The second group is composed by the parameters of

the Gaussian smoothing function that is essential for deal-
ing with the high level of white noise produced by the high
speed camera. In addition, the smoothing process reduces
the influence of the strong edges produced due to the depth
of certain facial features such as eyes and nose. The smooth-
ing factor has a strong influence on the descriptor value
and therefore should be carefully determined. Based on
the training data for each type of cube the parameters were
tuned so that the distances between the descriptors inside the
clusters were minimized the and the distances between the
centers of the clusters were maximized.

The third group of parameters is the number and spread
of the histogram bins in the δvxy, δvxt, δvyt plans. Various
bins spread configurations were tested during the develop-
ment process. The bin configuration resulting in the best
descriptive results was selected.

4. Database

In this section we present the creation and extended annota-
tion of a new micro-expression hi-speed video database.

4.1 Available Databases

Facial expressions analysis research suffers from lack of ex-
tensive databases for training, validation and comparison be-
tween different approaches [21].

A popular database of facial spontaneous expressions
is RU-FACS [22]. This database was created using a ‘false
opinion’ paradigm and contains 100 subjects. The subject’s
faces were captured by four synchronized Dragon cameras
by Point Grey, whose maximum frame rates with 640×480
resolution are 30 fps. Until now only 33 subjects have been
FACS-coded. There are two more, relatively small, facial
spontaneous expressions databases [23], [24]. However, it
is very difficult to estimate the quality of the tags in small
scale data. Another group consists of databases containing
only pseudo-spontaneous expressions. Cohen and Kanade’s
DFAT-504 [25] contains videos of 100 university students.
The emphasis was put on regular facial expressions (not
micro-expressions). MMI Facial expression [6] is another
fast growing database, that contains 300 manually coded
frame-by-frame annotations. In 2010, these two databases
started providing phase tags. In [26] the author presents
an overview of some additional databases, including ones
that were captured by IR cameras. To our knowledge, no
database dedicated to hi-speed video of facial expression has
been proposed yet.

4.2 Database Creation

Two basic approaches can be used for setting the ground
truth for facial expressions in the videos. The first is done by
using descriptive tags such as FACS as it was done in previ-
ously presented databases. The other is performed by mea-
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Fig. 10 Example frames of our hi-speed micro-expression database.
Database contains 10 university student subjects (5 Asian, 4 Caucasian,
1 Indian).

suring the displacement of predefined feature points on the
face and reconstruction of 3D shape of the face [11]. First,
IR markers are attached to the face (ther markers are invis-
ible to regular cameras). Then a calibrated set of 3 near-
infrared cameras together with visible light cameras cap-
tured the face motion. In a last step the 3D location of each
marker is triangulated based on near-IR cameras and this in-
formation is used as ground truth. In this research FACS
seems to be more suitable as it can subsequently be easily
related to emotional states. In addition, the use of strong
lights in our system (for minimizing the noise from the hi-
speed camera) made it impossible to replicate the data col-
lection procedure based on IR pen markers from [11].

The lack of a micro-expression database captured by
hi-speed camera motivated us to create our own video
database.

We separated the database creation task in two stages.
The first stage targets videos of posed facial expressions that
will allow us a evaluation of our algorithm. The second
stage includes more realistic videos, that will be acquired
in the near future in collaboration with psychologists.

This paper focuses on the results of the first stage of the
database that contains posed micro-expressions. For video
capturing a Grasshopper camera by Point Grey was used.
Camera settings are: 480×640 resolution, 200 fps, RAW8
mode (in this mode minimum internal signal processing is
done allows it to reach 200 fps).

McCabe’s [27] recommendations for mugshot and fa-
cial image filming were used as the guidelines for video face
recording. Three lights were used for shadow cancelation,
left, right and hight lights with diffusion sheets to minimise
hot spots on the facial image. Uniform background approx-
imately 18% gray was used and the camera was rotated 90
degrees (640×480) to maximize the amount of pixel on the
face region. The database contains video of 10 university
student subjects (5 Asians, 4 Caucasians, 1 Indian, with av-
erage age of 25 years old with standard deviation of 4), (see
Fig. 10). The participates were trained to perform mild and
subtle facial expression. After manually cutting each one
of the expression to separate sections, expression that were
similar to micro-expression were added to the database. The
extracted video cubes from the section correspond to one
AU, starting from neutral expression, going through all three
phases of AU and going back to neutral. The average length
of the section is 0.51 sec. with standard deviation of 0.2 sec.

Fig. 11 Magnitude changes of one of the representative bins in our de-
scriptor during micro-expression. The text represents a standard phase
tags described by FACS, starting from 1.) Neutral, followed by 2.) Onset,
3.) Apex, 4.) Offset and back to 1.) Neutral. In bold are the new transi-
tion tags, they correspond to boundary frames for which it is ambiguous to
which phase of micro-expression they belong. The frames with transition
tags are represented within a rectangle.

4.3 AU’s Boundary Phase Tags

Recently, FACS tagged databases [6], [25] started providing
additional AU phase tags such as Onset, Apex and Offset.
For that type of tagging every AU is split into 5 sections:
starting from 1.) Neutral, followed by 2.) Onset, 3.) Apex,
4.) Offset, and back to 1.) Neutral. (see Fig. 11 Bottom
row).

When using 200 fps camera, transition between the AU
phases happens over several frames. Selection of a single
frame representing the sharp border between phases dur-
ing the tagging process would introduce an arbitrary ele-
ment in the ground truth. In order to avoid this issue, we
introduce additional transition tags: Neutral-Onset, Onset-
Apex, Apex-Offset, and Offset-Neutral (see Fig. 11 upper
row). During the classification step, the frames correspond-
ing to transitional tags are considered classified correctly
when classified to either of its neighboring phase tags. This
approaches allows to limit issues related to arbitrary ele-
ments inherent to manual tagging processes and leads to
more reliable results.

Next we shortly explain the process for determining the
transition frames in the video. First, the tagger view the
video section and tagged the last frame that contained a cer-
tain AU phase of the expression. Next the tagger was asked
to jump approximately 15 frames forward, to the next phase
of the expression and was asked to view the video in reverse
and to tag the last frame that belonged to that AU phase.
The frames between the first and the second tag during this
process were defined as transition frames.

5. Experiment Results

In this section we first present the analysis of our 3D gradi-
ent histogram descriptor based on frame-by-frame classifi-
cation results of the k-mean algorithm, followed by a com-
prehensive analysis of miss-classified frames. Next, the re-
sults of our AU recognition are presented. Finally, an ex-
ample of micro-expression timing characteristics measure-
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Table 1 Frame by frame classification results.

Facial Cubes AU Onset Apex Offset Neutral
a) Forehead AU2 0.93 0.95 0.91 0.95

b) Eyebrows AU4 0.84 0.83 0.9 0.93

AU5 0.86 0.83 0.85

c) Eyes AU4 0.84 0.81 0.84 0.92

AU7 0.86 0.8 0.81

AU43 0.85 0.85 0.84

d) Between AU4 0.93 0.9 0.84 0.9

the eyes

e) Lower AU10 0.95 0.93 0.95 0.94

nose

f) Mouth AU12 0.81 0.85 0.85 0.88

AU24 0.81 0.79 0.79

AU26 0.83 0.67 0.8

g) Mouth AU13 0.85 0.81 0.89 0.83

corners

h) Chin AU17 0.83 0.83 0.84 0.89

ments based on the proposed descriptors is given.
Current version of the algorithm was implemented in

Matlab using “Piotr’s Image & Video Toolbox” [28] with-
out special emphasis on performance. However, the paral-
lel structure of the 3D gradient histogram descriptor bene-
fits from implementation on a parallel architecture hardware
such as GPGPU.

5.1 Frame-by-Frame Classification

First, facial video cubes from our database were divided
into 8 groups: (a) forehead, (b) left and right eyebrows, (c)
left and right eyes, (d) between the eyes, (e) lower nose, (f)
mouth, (g) left and right mouth corner, (h) chin. Only one
expression appears across every video cube, and in total we
obtained 15000 frames from all the cubes. The 3D-Gradient
historian descriptor with k-mean algorithm (without the vot-
ing procedure) was used and then all the frames were clas-
sified and compared against the ground-truth.

In Table 1 we report the classification results for each
group. The results indicate good classification precision in
cubes of the (a) forehead, (d) between the eyes, (e) lower
nose. This is due to the small number of AU classes and
the fact that they differ greatly from each other. The group
(h) showed lower rates due to the beards on two faces on
paticipants in the database. The mouth cube (f) shows
the lowest recognition rate, which is consistent with many
other works on facial expression recognition that report that
mouth movements are the most challenging for classifica-
tion.

By analyzing the results in Table 1 we can see that
Onset and Offset phases, in most of the AUs, have higher
classification precision than the Apex phase. This indicates
that the proposed descriptor is more suited for motion recog-
nition and segmentation than for classification of the static
frames such as during the Apex phase. In addition, the AU0
(frames with Neutral expression) tags are detected with high
accuracy.

The confusion matrix presents the classification of the
frames in video cubes of the Eyes (see Fig. 12). It is im-

Fig. 12 Confusion matrix of classification results of AUs Onset, Apex,
Offset and neutral phases related to eyes movements: AU4 (brow lowerer),
AU7 (lid tightener), AU43 (eyes closed) and AU0 (neutral). Cells get
darker as the corresponding rate gets higher. The classification was done
using the leave-one-subject-out cross-validation approach. In the figure
‘On’ refers to Onset, ‘Ap’ to Apex and ‘Of’ to Offset.

Table 2 Miss-classified frames across 15000 frames.

Onset Apex Offset
Total frames 4000 7000 4000

Miss-classified frames 875 2216 821

Classification rate 78.13% 68.34% 79.48%

Miss-classified frames (TT) 799 2131 726

Classification rate(TT) 80.02% 70.99% 81.85%

TT - Transition Tags were added

portant to note that for most of the AU’s that were miss-
classified during the Apex phase, there phase was detected
correctly. Similar classification behavior can be seen in the
Onset and Offset phases.

In conclusion, the high accuracy in AU0 detection and
correct detections AU phase in miss-tagged frames led us to
introduce the voting procedure that will result in higher final
classification rates (see Sect. 5.3).

5.2 Miss-Classified Frames Analysis

This section presents the correlation between miss-classified
frames and subjects, and between miss-classified frames and
AU phase.

First, based on our 15000 video cube frames that were
classified frame by frame using 34 different tags (AU0 + 11
AUs each with 3 phases), we present the number of miss-
classified frames during each phase in Table 2. Addition-
ally we present the classification results by use of Transition
Tags (TT), this tags helps to remove the errors introduced by
manual tagging process.

Next, the same miss-classified frames are shown corre-
sponding to subject identity. By doing so the stability of the
algorithm across different subjects is checked. In Fig. 13,
for each subject we present miss-classified frames during
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Fig. 13 Miss-classified frames across subject ID, upper face AUs on the
right side and lower face AUs on the left side. Onset and Offset phases
have low correlation to the subjects, contrary to Apex phase which error
influenced by the subject.

Fig. 14 AUs happen over a different number of frames. To represent the
distribution of miss-classified frames over the duration of the AU, all AU
video sequences were discretized into 23 bins. One bin for the beginning of
the AU time sequence, seven bins per phase and and one at the end. Results
are discussed in Sect. 5.2.

the Onset, Apex, and Offset phases, upper and lower AUs are
represented separately. We can see that the miss-classified
frames during the Onset and Offset phases have low corre-
lation to the subjects. In contrast the errors during the Apex
phase are influenced by the subject. However, the errors
during Apex phase don’t have a strong influence on the final
recognition results, see Sect. 3.4.

In the second analysis we investigated how the miss-
classification error was distributed over the AU phases. This
clarified the reliability of our descriptor across the different
AU phases. The distribution is presented in Fig. 14. First,
we could see that the classifications during the Onset and
Offset phases were more reliable than in the Apex phase.
Second, there were more miss-classified frames in the tran-
sition stage between the phases (bins 2, 8, 16, and 22), indi-
cating that classification of frames in the transition stage in
a frame by frame fashion remained a hard task. Third, the
miss-classified frames during the Apex phase were spread
homogeneously, suggesting that miss-classification of AU
happens across all Apex phases.

The difference of distribution between phases is that
contrary to the Onset and Offset phases for which all the
32 bins in our descriptor are giving information about the
frame, the Apex phase the descriptor relies on only 8 bins
corresponding to the shape of the surface δvyx histogram.
The values of rest of the bins from δvyt and δvxt histograms
will be zero due to lack of motions. All these results are

Fig. 15 Recognition rate of 11 AUs after the voting step, 5 upper face
and 6 lower face.

consistent with the behavior of our descriptor.

5.3 AUs Recognition Rate

Calculation of the final AUs recognition rate is based on
a leave-one-subject-out cross-validation approach, and the
presented results are rate averaged over all the trials. The
presented classification is the output of a voting procedure
applied on frames previously classified by k-mean algo-
rithm. (see Sect. 3.4). The recognition rate of 11 AUs is
presented in Fig. 15.

The recognition rate of the 11 AUs for micro expres-
sions analyzed by us are similar and sometimes better than
the recognition for the same AUs for full expression using
other state-of-the-art approaches [7], [29] and comparable to
more recent works such [16], [17], [30].

The comparison was possible due to the similarity of
the captured scenes (frontal view of the face without signif-
icant head motions), between our hi-speed video database
and databases such as [25], [6]’s with posed expressions,
and [22] with spontaneous expressions commonly used in
AU detection evaluation.

5.4 Measurement of AU’s Timing Characteristics

The changes of the bins’ values in the 3D gradient oriented
histogram reflect the changes and the motion accelerations
of facial movements. Therefore, timing characteristics of
micro-expressions can be measured directly from the de-
scriptors’ values. Figure 16 shows an example of the change
in magnitude of the representative bins over time during a
micro-expression. In this example, the magnitude of YT-
bins (1 and 8) and XY-bin (1 and 5) of our descriptor dur-
ing AU4 provide a quantitative measurement of the move-
ment of the eyebrow over time. After classification it be-
come clear that the duration of Onset is 29 frames (approx-
imatively 0.145 seconds), the duration of Apex is 23 frames
(approximatively 0.115 seconds), and the duration of Off-
set is 25 frames (approximatively 0.125 seconds). A possi-
ble use for such a magnitude/time profile is the distinction
and classification between posed and spontaneous micro-
expressions. Such a use remains to be further investigated.
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Fig. 16 Example of descriptor magnitude/time profile reflecting move-
ments of a micro-expression. Magnitude of YT-bins (1 and 8) and XY-bin
(1 and 5) of our descriptor during AU4 provide a quantitative measurement
of the movement of the eyebrow over time. The top row shows frames
representative of each phase during the activation and release of AU4.

6. Conclusions and Future Work

In this paper, we presented a novel approach for facial
micro-expressions detection using 3D gradient histogram
descriptor applied on hi-speed video captured by 200 fps
camera. Experimental results indicate its particular useful-
ness in detecting the facial skin surface motion in hi-speed
videos. Due to similarity between the scenes in our new
hi-speed video database and in both Cohn-Kanade [25] and
MMI [6] databases (that are commonly used in AU detection
evaluation), we compared the recognition rate results for 11
AUs. Obtained recognition rate produce similar and in some
cases better results compared with the state-of-the-art ap-
proaches and is targeting specifically micro-expressions.

Timing characteristics of facial expression and micro-
expressions were found to be significant for psychological
and behavioral analysis but have so far not been taken into
account due to lack of suitable technology. Until recently
state-of-the-art algorithms for facial expression detection
were unable to measure such characteristics and mostly
were applied on regular speed videos. The proposed de-
scriptor is specially adapted to hi-speed video analysis and
our method has the potential to provide finer description of
the timing characteristics of micro-expressions. More im-
portantly, correlation between the different bins values of
our descriptors to the corresponding physical motion can
provide information concerning the velocity and the accel-
eration of the expression.

To explore these possibilities, we are currently work-
ing in extending the database described in this paper: it will
include videos captured by hi-speed, hi-resolution and infra-
red synchronized cameras as well as data from other other
sensor for automatic ground truth extraction. Benefits of this
database will be: 1) As the database will be annotated using
FACS with additional transitional tags, it will allow to eval-
uate the performance of algorithms for time characteristics

extraction 2) Synchronized 25 fps and 200 fps videos will
allow comparison of our method adapted to hi-speed video
with other approaches.

Also a face tracking technique based on infrared cam-
era is under development and will complete our procedure
by adding a face tracking step. In addition to face tracking,
IR images will be used for masking uninformative parts of
the face (see Sect. 3.2). For example the face boundaries and
area of an open mouth can be easily detected in IR images.

Finally, other standard classification algorithms for AU
detection will be combined with our descriptor.
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