粒度分布推定のための発破ずりの3次元モデルの生成手法

出川 諒[†] 亀田 能成[‡] 川村 洋平^{*} Hyongdoo Jang[§] 北原 格[‡]

*筑波大学 大学院システム情報工学研究科 〒305-8573 茨城県つくば市天王台 1-1-1
*筑波大学 計算科学研究センター 〒305-8573 茨城県つくば市天王台 1-1-1
*秋田大学 大学院国際資源学研究科 〒101-8543 秋田県秋田市手形学園町 1-1
%Curtin University Dept. of Mining Eng. and Metallurgy Eng. Western Australian School of Mines

95 Egan St, Kalgoorlie WA 6430 Australia

E-mail: †s1520803@u.tsukuba.ac.jp, ‡{kitahara, kameda}@iit.tsukuba.ac.jp

あらまし 多視点画像から復元した3次元点群の分割による発破ずりの粒度分布推定手法を提案する. 多視点画 像の対応点情報から発破ずりの3次元点群を復元し,その3次元点群をクラスタリング処理によって岩ごとに分類 した結果を用いて発破ずりの粒度分布を推定する. 鉱山で撮影した発破ずりの画像に提案手法を適用して推定した 粒度分布,ふるい実験によって計測した粒度分布,従来行われていた2次元画像処理によって推定した粒度分布を 比較し,提案手法が従来手法と比べて高い精度を実現することを確認した.

キーワード 3次元モデル,多視点画像,クラスタリング,粒度分布,発破ずり

1. はじめに

本稿では、多視点画像から復元した3次元モデルを 用いた採掘現場における発破ずりの粒度分布推定手法 を提案する.ここで発破とは、鉱山において火薬など を用いて岩石を爆破する作業のことであり、砕けた岩 石の山を発破ずりと呼ぶ.鉱山は露天掘り鉱山と坑内 掘り鉱山の二種類に大別されるが、提案手法は可視光 カメラでの撮影を前提とするため、露天掘り鉱山を対 象とする.

1627年に初めて産業用の発破が行われて以来,発破 による採鉱は生産効率の高さから鉱業分野において急 速に普及してきた[1].近年の標準的な発破方法は,露 天掘りおよび坑内掘り鉱山において,最も効率的な掘 削方法の一つである.発破の主な目的は,周囲の物体 を損傷させずに目的の岩石を用途に適した粒度に砕く ことである.発破ずりに含まれる砂などの微粒子や大 きな岩の量が少ないほど発破の効率が向上する.しか し,発破の衝撃に対する岩石の応答特性は複雑な現象 であるため,発破ずり粒度を目的値と一致させること は未だ困難な課題である.発破ずりの粒度分布を計測 し,発破の設計を逆解析することで,発破ずりを目的 の粒度分布に制御する研究が発破工学の分野で進めら れており[2],粒度分布を正確に推定することは重要な 課題となっている.

我々は、図1に示すような、多視点画像を用いた3 次元形状復元手法に基づいた発破ずりの粒度分布推定 に関する研究に取り組んでいる.多視点画像の対応点 情報から発破ずりの3次元点群を復元し、その3次元 点群をクラスタリング処理[7]によって岩ごとに分類 し、発破ずりの粒度分布を推定する.

2. 関連研究

従来の粒度分布計測では、ふるいを用いて選別する 手法が用いられている.実験室程度の規模の発破ずり の計測はできるが、実際の発破現場のような大規模な 発破ずりを対象とした計測を行う場合、一つずつふる いに掛けながら粒度分布計測行うことは現実的ではな い.また、ふるいに掛けている間は採鉱作業を中断す るため、生産効率低下の問題が存在する.

そこで,近年ではカメラで撮影した画像を用いて粒 度分布を推定する手法が研究されている. Maerz ら[3] は,画像中の輪郭情報から岩の閉領域を検出し,その 領域の画素数と同じ面積の円の半径を粒度として粒度 分布を推定する.この手法では,2次元情報のみを用 いて推定処理を行うため,3次元的な見え方の変化を 考慮していない.また,画像から粒度を推定するため には,大きさが既知の物体を発破ずりの近くに設置し, 両方が画像中で観測されるように撮影する必要がある が,発破ずりの崩壊によって作業員が怪我をする危険 性がある.

画像情報を用いた粒度分布推定手法の問題点を解 決するために,発破ずりの3次元形状を計測し,それ を用いて粒度分布を推定する研究が行われている. Onederraら[4]は、レーザレンジセンサを用いて発破ず りの3次元形状を復元し、発破ずりの3次元モデルを 用いて粒度分布を推定している.この手法では、3次 元モデルを平行投影したレンダリング画像を領域分割 することで、各岩の閉領域を計算し、粒度分布を推定 している.しかし、レーザレンジセンサは比較的大掛 かりな計測機材であるため、発破現場のような大規模 空間では持ち運びが困難である.

図1 提案手法での粒度分布推定の流れ

本手法では、モバイルカメラで撮影した多視点画像 から復元した発破ずりの3次元モデルを多視点画像の 色情報と岩の形状特徴を手がかりに岩ごとに分類し、 個々の岩の3次元モデルの大きさを求めることで、3 次元的な粒度分布推定を実現する.

3. 発破ずりの3次元モデルの復元

3.1. 多視点画像の撮影

発破現場における発破ずりは数 10m から数 100m に 及ぶため,撮影場所を変えながら静止画像を撮影する 場合,膨大な手間と時間を要する.そこで,本手法で は図1左上に示すように,発破ずりの周囲を移動しな がら解像度の高いビデオカメラで動画撮影することで 多視点画像の撮影の手間を軽減する.

従来の粒度分布推定手法では、被写体のスケール (世界座標系に対する比率)を求めるために、撮影画 像中に大きさが既知の物体を写す必要があるが、本手 法では、図2に示すように任意の2点で撮影した画像 と世界座標系での2点間のカメラ間距離*dworld*を用い ることで、SfM座標系の世界座標系に対する比率*rsw*を 計算する.SfMは対象の3次元形状と撮影した多視点 画像のカメラの位置姿勢を推定することができるため、 SfM 座標系での2点のカメラ間距離をd_{sfm}とし、世界
 座標系での2点のカメラ間距離をd_{world}とすると、式
 (1)を用いて SfM 座標系の世界座標系に対する比率r_{sw}
 を計算することができる.

$$r_{sw} = \frac{d_{world}}{d_{sfm}} \tag{1}$$

図 2 既知のカメラ間距離を用いた 3 次元モデルの スケール計測

3.2. 発破ずりの3次元モデル復元

多視点画像に SfM (Structure from Motion)を適用し, 発破ずりの疎な3次元点群と多視点画像のカメラの位 置姿勢を推定する[5]. SfM とは,多視点画像間で特徴 点の対応点探索を行い,得られた対応点から因子分解 法[10]を用いて多視点画像のカメラの位置姿勢と対応 点の3次元位置を推定する手法である. SfM で推定さ れた3次元点群は分布が疎らであるため,PMVS (Patch-Based Multi-View Stereo)を用いて疎な点群か ら密な3次元点群を生成する[6].PMVSは,対応点の 3次元位置に物体の表面を近似するパッチを生成し, 各カメラにおけるパッチの視認可能性判定に基づきパ ッチを接平面方向に拡張することで,密なパッチを復 元する.以上の処理で復元した3次元モデルを図1右 に示す.

多視点画像と3次元モデルを用いた 発破ずりの粒度分布推定手法

4.1. 発破ずりの3次元点群の特徴

3次元点群をクラスタリングするためには、クラス タリングの手掛かりとなるパラメータが必要である. 本手法では岩の3次元点群を観察し、その特徴をパラ メータとする.

図3に3次元モデルの一部を抜き出したレンダリン グ画像を示す.この図を観察すると、岩の3次元点群 には以下の特徴があることがわかる.

- (1) 同一の岩に属する3次元点群間の距離は比較的短い.
- (2) 発破ずりの3次元点群はいずれも類似した色情報 を有する(図3左).
- (3) 岩の3次元モデルは複数の平面からなる角張った 形状のものが多く[9], 3次元点群の法線ベクトル の方向は類似している(図3右).

以上を考慮して、本手法では、3次元点群のユーク リッド距離、法線ベクトルのパラメータを用いて3次 元点群を岩ごとに分類するためのクラスタリング処理 を行う、岩を構成する平面上の3次元点群を同じクラ スタに分類した後、それらのクラスタを統合し、岩と クラスタが1対1に対応するような分類結果を得る.

図 3 発破ずりの 3 次元点群の特徴 (左:3 次元点群の色,右:3 次元点群の法線ベクトル)

4.2.3次元点群のクラスタリングによる

3次元モデルの過分割

3.2 節で述べた手法を用いて復元した3次元点群に 対して, Supervoxel クラスタリング[7]を適用する. Supervoxel クラスタリングは、3次元点群を3次元点 群間の色,距離,法線ベクトルに重みづけしたものを パラメータとして k-means 法を用いてクラスタリング を行う手法である. その際に, 岩の平面の3次元点群 が同じクラスタに属するようにクラスタリングを行う ため, 4.1 節で述べた岩の3次元モデルの特徴から色 の重みを0としてクラスタリングを行う.

図4右下に発破ずりの3次元モデルの一部に対して Supervoxel クラスタリングを適用した結果を示す.同 じ色に塗られた点群は同じクラスタに属している.図 4から分かるように岩に複数のクラスタが属しており, 岩とクラスタが1対1に対応していないため,この状 態では正確な粒度分布推定が困難である.

4.3. 多視点画像を用いたクラスタの統合

図4にクラスタの統合処理の流れを示す.3次元モ デルを参照して,クラスタ中心と隣接クラスタの接続 関係を表現するグラフを作成する.図4右下に作成し たグラフの一例を示す.作成したグラフを多視点画像 上に投影し,白色領域をマスク領域としたマスク画像 を作成する.作成したマスク画像の一部を図4右上に 示す.

多視点画像上で岩の輪郭の検出を行う.輝度勾配が 大きい箇所をエッジとして検出するため、Laplacian Of Gaussian (LOG)フィルタ[8]を多視点画像に適用し、 岩のエッジを検出する.LOGフィルタを多視点画像に 対して適用した結果を図4左上に示す.

マスク領域に輪郭画素が存在するか否かを走査す るが、図4左上の白点線領域のように走査線の幅を適 宜設定することで、輪郭抽出などの画像処理の誤差へ の頑健性を高める.例として、図4の赤丸の二つのク ラスタを用いて説明する.図4左上の白点線領域内の ように、走査線上のLOGフィルタ値を調べ、輪郭領域 (LOGフィルタ値が閾値以上の画素)が存在する場合 は両端のクラスタは別々の岩であると判断しクラスタ の統合を行わない.図4左上のように走査線が輪郭と 交わらない場合は、走査線の両端となっている赤丸と して射影されたクラスタを図4左下のように統合する.

4.4. Bounding-Box を用いた粒度分布の推定法

分割した3次元点群に Bounding Box を当てはめる ことで粒度分布を推定する. Bounding Box の当てはめ 方には, 図 5 に示すように, 軸と辺が平行な Axis-Aligned Bounding Box (AABB) と物体の向きに沿 った Oriented Bounding Box (OBB) がある. AABB は 計算が容易であるが, 図5左に示すようにクラスタの 形状と Bounding Box の形状が異なるため, 粒度分布推 定誤差が大きくなる. 本手法では, 図5右に示すよう な物体を囲う最小矩形である OBB を用いて粒度分布 を推定する.

図4 クラスタの統合処理の流れ

粒度分布の真値を計測する場合、発破ずりをふるい に掛けて大きさごとに分類を行う.このとき、岩の最 小面がふるいを通過するため,本手法では OBB の直方 体の三辺の中で長さが中間の辺の長さを粒度と定義し, 粒度分布を推定する.

Axis-Aligned Bounding Box

Oriented Bounding Box 図 5 クラスタに当てはめた AABB(左)と OBB(右)

5. 発破ずりの粒度分布計測実験

5.1. 発破ずりの3次元モデルの復元精度の評価

3.1 節で述べた手法を用いて撮影実験を行い,発破 ずりの3次元モデルの復元精度の評価を行う.撮影は, 茨城県土浦市にある塚田陶管株式会社小高工場が有す る砂利の採掘現場で行った. 撮影機材としてソニー社 製の4KビデオカメラFDR-AX1を採用し,解像度3820 画素×1920 画素, フレームレート 60fps, シャッタース ピード 1/1000 秒でビデオ撮影を行った. ビデオデータ

から一定間隔でフレームを276枚選択した.

発破ずりの中から選択した二つの岩の実寸値と3 次元モデル上での推定値の比較実験を実施する.計測 に用いた岩 A と岩 B および計測箇所を図 6 に示す.こ のとき、3.1節で述べた世界座標系に対する SfM 座標 系の比率r_{sw}は 2.61×10⁻¹ であり、この値を用いて各計 測箇所の復元精度を検証した結果に表1に示す.表1 から推定した3次元モデルの大きさと実寸値の誤差は 岩 A については平均 24.7mm, 最大 47.0mm であり, 岩 Bについては平均 30.0mm, 最大 32.0mm であり, 最大 で約 7.9%, 平均で 5.4%の誤差であった. これらの結 果より,本手法の3次元復元精度は粒度分布を推定す るために十分であると言える.

3次元モデルの復元精度検証に用いた岩 A と 図 6 岩 B の各計測箇所

	Measured length	Scale of 3D model [mm]	Actual size [mm]	Error [mm]
Rock A	\bigcirc	518	550	32.0
	2	372	400	28.0
Rock B	\bigcirc	372	390	18.0
	2	642	595	47.0
	3	561	570	9.00

表1 3次元モデルの推定スケールと実寸値および誤差の計測結果

5.2. 発破ずりの3次元モデルの復元精度の評価

提案手法で推定した粒度分布を真値および従来手 法と比較することで,粒度分布の推定精度の評価を行 った.

撮影機材は Apple 社の iPad Pro のカメラを用いて, 解像度 1920 画素×1080 画素,フレームレート 30fps でビデオを撮影した.ビデオデータから一定間隔でフ レームを 242 枚選択し3次元モデルを生成した.クラ スタの統合処理では,その中から 100 枚を選択して利 用する.撮影は,オーストラリアのカルグーリーにあ る露天掘り鉱山の発破ずりから持ち出した岩を対象と して行った.このときの世界座標系に対する SfM 座標 系の比率r_{5w}は 3.77×10⁻² である.

図9に撮影した多視点画像と3次元モデルの復元結 果,Supervoxelクラスタリングの結果,および,統合 したクラスタに OBB を当てはめた粒度分布の結果を 示す.また,図7に提案手法,ふるい実験で計測した 真値,WipFrag[11]の自動輪郭抽出の領域分割を手動修 正した結果のそれぞれの粒度分布結果を示す. WipFragとは,従来手法の2次元画像から岩の輪郭情 報を検出することで画像の領域分割を行い,粒度分布 を推定することができるソフトウェアである.図8に WipFragの自動輪郭抽出の領域分割結果(上)とその結 果を手動修正した結果(下)を示す.表2に,各累積 度における提案手法,ふるいで計測した真値および WipFrag の手動修正した結果の粒度分布の誤差を示す.

図7 粒度分布の推定結果(赤:提案手法,黒:ふ るい実験で計測した真値,青:WipFragの手直し結果)

図8 上:WipFragの自動輪郭抽出,下:手動修正結果

表2の最後の行に示すように、各累積度における提 案手法の粒度①とふるい実験で計測した真値

②との誤 差の平均は 7.60mm であった. また, WipFrag の手直 しで推定した粒度③とふるい実験で計測した真値②と の誤差の平均は 11.8mm であった. 以上の結果から, 従来手法より提案手法を用いて推定した粒度分布精度 の方が高いことが確認できた.特に,図7のParticle size (横軸)の 1.00~10.0mm から分かるように,提案手 法とふるい実験で計測した粒度分布がほとんど一致し ており、1.00~10.0mmの粒度分布推定精度が高いと言 える. しかし, 図 7 の Particle size (横軸) の 10.0~ 50.0mm が示すように、クラスタが統合しきれていな い箇所があり、粒度が大きくなると真値との誤差が大 きくなっていることが分かる. 統合処理の精度は 4.3 節で述べた岩の輪郭抽出の精度に依存しているため, さらに粒度分布推定精度を上げるためには、画像上で の岩の輪郭抽出の精度を上げ、クラスタの統合処理の 精度を上げることが必要である.

6. おわりに

多視点画像と多視点画像から復元した3次元モデ ルを用いて発破ずりの粒度分布を推定する手法を提案 した.画像上での岩の輪郭と岩の形状特徴を手掛かり に3次元点群のクラスタリングを行い,岩とクラスタ を1対1に対応させることで,3次元モデルの岩ごと の分類を実現した.

鉱山で撮影した発破ずりの画像に提案手法を適用 して推定した粒度分布,ふるい実験によって計測した 粒度分布,従来行われていた2次元画像処理によって 推定した粒度分布を比較し,提案手法が従来手法と比 べて高い精度を実現することを確認した.

図 9 多視点画像(左上),復元した3次元モデル(右上),Supervoxelクラスタリングの結果(右下), 統合したクラスタに OBB を当てはめた結果(左下)

表 2 提案手法,ふるいで計測した真値および WipFragを用いて推定した粒度分布および真値との誤差

	Particle size [mm]			Error [mm]	
Passing percentage[%]	Proposed Method((1))	Sieving Test(2)	WipFrag Manual Editing(③)	(1) and (2)	2 and 3
100	37.5	53.0	75.0	15.5	22.0
92	19.1	37.5	62.5	18.4	25.0
77	14.6	26.5	42.8	11.9	16.3
60	13.0	19.0	32.7	6.00	13.7
21	8.30	9.50	15.0	1.20	5.50
4	4.60	4.80	5.00	0.200	0.200
Average Error				7.60	11.8

(文) 献

- Buffington, Gary L., "The Art of Blasting on Construction and Surface Mining Sites", ASSE Professional Development Conference and Exposition, 2000.
- [2] Cunningham, C. V. B. "Fragmentation estimations and the Kuz-Ram model-Four years on" Proc. 2nd Int. Symp. on Rock Fragmentation by Blasting. 1987.
- [3] Maerz, N. H., Franklin, J. A., Rothenburg, L., & Linncoursen, D., "Measurement of rock fragmentation by digital photoanalysis", 6th ISRM Congress, 1987.
- [4] Onederra, Itaro., M. J. Thurley, Alex Catalan., "Measuring blast fragmentation at Esperanza mine using high-resolution 3D laser scanning", Mining Technology 124.1, pp. 34-36.
- [5] N. Snavely, S. M. Seitz, R. Szeliski, "Photo Tourism: Exploring Photo Collections in 3D", ACM Transactions on Graphics, Vol.25, No.3, pp.835-846, 2006.
- [6] Y. Furukawa, J. Ponce, "Accurate, Dense, and Robust Multi-View Stereopsis", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

- [7] J. Papon, A. Abramov, M. Schoeler, F. Worgotter, "Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013.
- [8] Chen, JerSen, Andres Huertas, and G. Medioni. "Fast convolution with Laplacian-of-Gaussian masks", IEEE Transactions on Pattern Analysis and Machine Intelligence 4, pp.584-590, 1987.
- [9] 氏平増之,細谷昭悟,高貝暢浩,小川健太,小野 修司,"岩石の形状分類法および形状と重量推定 値の関係",資源と素材 Vol.112.3, pp.140-146, 1996.
- [10] C. Tomasi, T. Kanade, Shape and motion from image streams under orthography: a factorization method", International Journal of Computer Vision, Vol.9, No. 2, pp.137-154, 1992.
- [11] Palangio, Tom C. "WIPFRAG--A new tool for blast evaluation", No. CONF-9502142--. International Society of Explosives Engineers, Cleveland, OH (United States), 1995.