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1. Introduction

To promote training efficiency and the realization of

tactical analysis, in recent years, there has been a move

to introduce information processing/analytical

technology into sports competition. The visual tracking

of moving objects is one of the most important issues for

computer vision research. Recent applications have been

developed to illuminate tactics and improve their

construction levels for sporting events 1)~3). However, to

achieve practical applications, various challenges must

be mitigated, including the detection of such multiple

objects as players and balls that move quickly and

anomalously by images captured in large-scale spaces. In

this paper, using multiple images, we focus on detecting

and stably tracking objects that move quickly and

anomalously.

As a tracking target, we focus on a badminton

shuttlecock (hereafter called "shuttle"), since it

conspicuously presents the above problems. A shuttle is

composed of feathers that are adhesively attached to a

hemispheric cork. Since it is lighter than the balls used for

other sports, attaching a transmitter or a marker for

position sensing is too difficult. Tracking a shuttle

presents an additional problem. Due to its structure,

during a badminton rally, its moving velocity is

inconsistent and is drastically altered by air resistance 4).

When an object moves quickly, its image is observed

with a motion blur, as shown in Fig. 2 (b) and (c).

Utilizing information provided by the motion blurs, we

successfully developed a visual tracking method for an

object that erratically and drastically changes its moving

speed (Fig. 1) 5). However, when the shuttle has just been

returned, its speed becomes maximum and it moves

anomalously (Fig. 2 (a)). As a result, since accurate

ellipsoidal regression, which is needed for estimating the

motion blur shape, is impossible, it is difficult to

accurately estimate its position and speed by our

conventional method. In this paper, we focus on

observing a target object (when it moves very fast), as

one curved-line by motion blur; we then propose a
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method that estimates the 3D trajectory by applying the

shape-from-silhouette technique with multi-viewpoint

images. Because of its eccentricity, the shuttle has a

characteristic that its position and posture change

anomalously during rotational movement. In this study,

anomalous movement refers to a condition accompanied

by abrupt movement by the force exerted from the

outside of the target object. Therefore, in this paper, a

badminton shuttle is an object moving quickly and

anomalously.

2. Related Works

Using a super-high-speed camera is a promising

approach for tracking a small darting object, such as a

microbe or a ball 6) 7). However, it is unreasonable to

install such a camera for actual badminton games in

ordinary gymnasiums. Visual object tracking methods

using standard color cameras are also being developed

for sporting events 1)~3). In the captured images, the

ball's observation size is small, it moves quickly, and has

just a couple characteristics, such as color and shape.

These methods solve the problem by assuming that the

ball's motion follows a simple dynamic model and by

observing spherical objects, such as a ball, as a circular

form in the captured images. Even when the target

object is not observed due to occlusion or circumstances

such as aggravation of the observation conditions, as

decreased resolution, a Kalman filter can compensate for

the lost information to estimate the position 8) 9).

In this paper, we refer to the state (speed) of the

shuttle to solve the shuttle-tracking problem with both

switching Kalman and particle filters (Section 3).

Because the position's observation precision is high

when the speed is slow, we input the distance between

the observed positions in the former and present frames

(observation speed) to the Kalman filter position

(observation position). When the speed is fast, we input

the observed velocity (observation speed) and the

estimated position (observation position) to the Kalman

filter (Fig. 3).

However, the shuttle does not follow a simple dynamic

model shortly after being struck. In Section 4, we solve

this problem by applying a 3D reconstruction method,

called shape-from-silhouette 10), which reconstructs the

3D shape of target objects by combining silhouette

images generated from multiple-view images. When the

shuttle moves very quickly and anomalously, we

estimate its 3D position as a 3D trajectory, rather than

an individual position, and we observe it as a single

curved-line by the motion blur in the captured images.

We call the curved-lines "observation lines" and we

extract them from every multiple-view image. We

generate a 3D trajectory by combining the extracted

observation lines using the shape-from-silhouette

technique.

3. Visual Object Tracking Method
Utilizing Motion Blur

3.1 Detection of a Moving Object Region

At the beginning of the object tracking and/or after

losing sight of the shuttle, we detect it using the

following processes. First, the moving object candidate

regions are extracted by background subtraction

processing, where the player regions are excluded by

referring to the player-region size. We mask out such

regions as the court-line and the net where accurate

segmentation processing is difficult due to the high

brightness level. We execute these processes in frames

captured from two viewpoints and calculate the shuttle's

3D position by stereo vision. The shuttle's 3D position is

the observed position of the Kalman filter.

3.2 Construction of a Kalman Filter

We use the 3D position, the velocity, and the
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Fig. 3  Visual tracking method of object that variously and

drastically changes its moving velocity by motion blur.

Fig. 2  Examples of appearance of a badminton shuttle with

motion blur.



acceleration for the state of the shuttle in frame k:

The state model of the Kalman filter is denoted by Eq.

(2):

Here, A is a state transition matrix and the shuttle's

movement forms a parabola with the air resistance:

δt is the time lag between two successive frames. Buk

is the control input of a state transition. uk is a vector

representing the input to the system. wk is process noise

by using Gaussian distribution. m is the mass and c

expresses the amount of air resistance. Since the

acceleration due to gravity g applied in the z direction is

not included in the state transition matrix of A, matrix B

is defined by including this consideration. In

comparison, in frame k, when the estimated 3D position

of the shuttle becomes pk, an observation model can be

expressed by Eqs. (5) and (6):

BD: background difference

(The moving object candidate regions are extracted

by background subtraction processing in frames

captured from two viewpoints. The shuttle's 3D

position is calculated by stereo vision.)

IV: interframe velocity

PCG: particle center of gravity

BV: blur velocity

An observation model defines the position and the

velocity. εk is the random noise that occurs at the time of

the observation. The observation noise is a variance

matrix computed from the observation error of the

observation trajectory acquired manually and a

trajectory without observation noise. Based on the

velocity gained by the process explained below,

observation model Ĥk (based on the object's velocity) is

obtained by choosing the observation information given

to a Kalman filter.

3.3 Likelihood Calculation Using Color

Information

Next, we used color information to calculate the

tracked object's likelihood. In this study, the likelihood

of the tracked object (shuttle) is defined as the plausible

color of the shuttle observed from the captured image.

(validity of shuttle). Fig. 4 shows the distribution of the

illuminance values in the observed badminton's shuttle

regions. The shuttle's illuminance level is affected by the

movement blur and the color of the shuttle appears to be

mixed with the color of the background.

Since the influence of the movement blur has a linear

relation with the velocity, we classify the distribution

into three classes (fast, medium, and slow) and

determine a likelihood model that corresponds to each

velocity. We employ a k-means algorithm as a clustering

method. As shown in Fig. 4 (left), the illuminance value

of the shuttle observed in the brown background region

(gymnasium floor) and the gray background region

(gymnasium wall) are well segmented into two clusters.

Fig. 4 (right) also shows the clustered results of the

observed shuttle illuminance. Since it is significantly

influenced by the motion blur, when the shuttle's speed

is fast, its color appears mixed with the background

(6)

(5)

(4)

(3)

(2)

(1)
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Fig. 4  (Left) Distribution of illuminance values of observed

badminton shuttle regions, (Right) clustering of

illuminance values of observed shuttle.



color. In the figure's RGB space, it is represented as

pink. Similarly, when the shuttle is slow, since there is

little influence by the motion blur, it is observed as its

original color. In the figure, it is represented by orange.

Finally, the middle velocity case is represented by cyan.

We classify the distribution into two background regions

and three velocity classes.

I. Gymnasium floor, fast velocity

II. Gymnasium floor, medium velocity

III. Gymnasium floor, slow velocity

IV. Gymnasium wall, fast velocity

V. Gymnasium wall, medium velocity

VI. Gymnasium wall, slow velocity

We assume that the distance from the center of

gravity of each color class and the shuttle's actual color

is a likelihood function and selectively use six kinds of

likelihood functions, based on the predictive position and

the shuttle's velocity. The output formula of the

likelihood function L(d) is presented in Eqs. (7) and (8):

The likelihood function L(d) is a function of the Euclid

distance d from the center of gravity of each color class.

We assume that a normal distribution function becomes

variance σ2, which is set based on the sample frame

group. L(da) is the illuminance values class of the

gymnasium floor background region. L(db) is the

illuminance values class of the gymnasium wall

background region. The likelihood function chooses L(da)

if the shuttle's predictive position is in the brown

background region. The gray background region

likelihood function of the court is considered L(db).

As shown in Fig. 2, when the shuttle speed is high,

under the influence of motion blur, the observed shuttle

color is mixed with the background color. In comparison,

when the moving speed decreases, it is observed as a

white point. Then, it is observed as a color close to the

original white color of the shuttle. The luminance

distribution was applied in two classes through this

preliminary investigation. This presents a challenge

since the estimation accuracy of the medium speed

shuttle decreases. Stable estimation is realized by

dividing it into three classes.

3.4 Acquisition of Object's 3D Position and

Velocity Using Particles

Our method can statistically estimate an object's 3D

position and its velocity information using particles (Fig. 5),

which are scattered around a 3D position predicted by a

Kalman filter. The initial variance is a range (spherical)

of process noise wk. The spherical variance range is

transformed into an ellipsoid form (Fig. 5 (a)) using a

velocity vector predicted by the Kalman filter. We can

place a particle in a range where the motion blur is

affected with a predictive velocity vector.

Then the method repositions the particle as weighted

by the likelihood function's output (Fig. 5 (b)). At this

point, the particles in the 3D space express the shape of

the motion-blurred shuttle (Fig. 5 (c)). The 3D position of

the shuttle is the center of gravity of all of the particles.

We can acquire velocity vectors by analyzing the

relocation particle's distribution (Fig. 5 (d)) in Eq. (9).

The movement velocity v of the shuttle in the 3D

position q is calculated by dividing the length of the

major axis l and the shutter-speed (opening time) t.

Here, the length l of the major axis of an ellipsoid

formed by the particles is the distance moved by the

shuttle during the shutter opening time t of the

capturing camera:

3.5 Experimental Results

We explain that an observation color of the shuttle

region is effective in the likelihood calculation of the

badminton shuttle. A color reduction process is applied

to the background image (as shown in Fig. 6 (a1)) and

the observed color of the background image is plotted in

the RGB space (Fig. 6 (a2) to obtain two representative

colors (Fig. 6 (a3), 6 (a4)). As for the observation color of

the shuttle region observed with motion blur, a shuttle

color (white) and a representative color of the

background region (Fig. 6 (a4)) are blended. The

observed color of the shuttle region is found on the

(9)
(8)

(7)
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Fig. 5  (a) Transforming a spherical distribution into ellipsoid

form, (b)  likelihood calculation, (c) particle relocation, (d)

acquisition of position and velocity.
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Fig. 6  The proof experiment that compared the observation color of the shuttle region with the various background colors. The proof experiment

for the coat of mat green background color (a1)^(a6), the proof experiment for the coat of mat blue background color (b1)^(b6), the proof

experiment for the background color of the gymnasium (c1)^(c6).



straight line that connects the shuttle color (white) and

the representative background color as shown in the

RGB color space (Fig. 6 (a5), 6 (a6). In our proposed

method, if a color blending is observed, we make a

likelihood function in which the ellipsoid of the

representative color and the white color is the observed

color. Then we set the likelihood so that the color of the

observed shuttle will be high. We get 30 shuttle regions

of the outside and the inside shuttle region. Fig. 6 (a5)

and 6 (a6) show the observation shuttle color in the RGB

space. Each shuttle region is within the parameters of

our model and various background colors are confirmed

with effect by our model. As shown in Fig. 6, we

conducted a proof experiment that compared the

observation color of the shuttle region with the various

background colors. The first experiment involved a green

coat mat and background color (Fig. 6 (a1)~6 (a6). The

second experiment involved a blue coat mat and

background color (Fig. 6 (b1)~6 (b6). The last experiment

involved the background color of the gymnasium (Fig. 6

(c1)~6 (c6). The distribution of the RGB values is the

same as in the case described above. Therefore, the

proposed method works effectively.

We evaluate the effectiveness of our proposed method

using video sequences that were synchronously captured

with two video cameras.

The multiple videos were captured using two digital

single-lens reflex cameras (Canon EOS 5D Mark-II) with

1,920 × 1,080 pixels resolution, at 30 frames/sec. The

shutter speed (exposure time) was set to 1/30 sec. Fig. 7

shows the estimation error calculated during ten racket

strokes. This experimental result is a sequence that

includes all types of shots. There are also a significant

number of variations in velocity. The estimation error of

the predicted position by the Karman filter is plotted as "×"

and the estimated error by the proposed method is "∗". The

above visual tracking process fails since, due to its quick

movement, the detection of the shuttle and the Kalman

filter construction is impossible in the early frames after

the shuttle has been hit.

We mitigate this problem by rewinding the time-line

from the initial observation frame (i.e., the first frame in

which the Kalman filter works) to a former frame, only

using the likelihood calculation (without the Kalman

filter prediction step), as shown by "+". The error

average is approximately 0.3 m. We estimated the

object's 3D position based on the information obtained

from two different viewpoints. As shown in Fig. 1, the

3D position (proposed method and ground truth) of the

shuttle of all 10 orbitals was plotted from the result of

Fig. 7.

When we capture badminton images, it is common to

take an overhead view of the entire coat from a higher

point, such as the second floor. Usually, the colors of the
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Fig. 7  Position estimation error across frames.



mat coats fall into the category shown in Fig. 6 (a) or 6

(c). Therefore, in many environments, the background

region of the badminton sequence can be divided into

two colors. The applicable condition is the environment

divided into these two classes. Other than players and

shuttles, dynamic objects are not reflected in the game

images of badminton. When a dynamic object exists in

the background, it is different from the size of the

shuttle, therefore it can be excluded by image

processing.

It is expected that a technology that provides 3D

position information of the shuttle in badminton

competition will be realized. Tactical analyses, in

particular, are conducted by determining what kind of

trajectory will be formed by the form of hitting.

Specifically, the tactical analysis data can be divided

into four types: [1] a pattern to take an ace, [2] a rally to

take an ace, [3] a shot that is easy to error, and [4] a

rally that is difficult for the other player 12). The tactical

analysis data of [1] to [4] are not required in detailing

the information of the rally.

However, the type of rally will change if the

estimation error exceeds 1 m in the environment of the

facility in a badminton competition. Therefore, it is

considered to influence the tactical analysis. The 3D

position estimation accuracy by this method has an

average error of 0.3 m. We consider that this is within

the range that can be fully utilized as tactical analysis

data.

4. Trajectory Estimation Method for
Badminton Shuttle Using Multiple
Exposure Time Images

The verification experiments of our previously

proposed method 13) were carried out in this paper and

the validity was confirmed in Section 3. In addition, we

proposed a new method by enhancing our previous

research 13). In the proposed method, it can be confirmed

from the experimental result of the estimation error in

Fig. 7. Because of the anomalous movement of the

trajectory of the shuttle, as shown in Fig. 2, the error is

large when the shuttle has just been returned.

Therefore, focusing on the shuttle, which moves quickly

and anomalously when it has just been returned, we

describe the trajectory estimation method in Section 4.

As shown in Fig. 2 (a), the movement of the shuttle is

anomalous for several frames just after striking and

until the moving direction is stabilized. After that, we

confirmed that the trajectory of the shuttle could be

estimated by the method proposed in Section 3. In

Section 4, we propose a trajectory estimation method at

the beginning of the shot. The method proposed in

Section 4 is applied at the beginning of the shot to

estimate the position of the shuttle, along with the

entire trajectory. After the movement direction is

stabilized, the method of Section 3 is immediately

applied (as shown in Fig. 8).

When estimating the 3D position of an object using

images taken from multiple viewpoints, it is assumed

that each image is taken synchronously. However, it

frequently becomes difficult to capture synchronous

images in a large space. By assuming a motion model, it

is possible to approximately estimate the 3D position.

However, it is difficult to fit a model when the object

moves quickly and anomalously. Moreover, when

capturing images of a shuttle, which moves quickly and

anomalously in a large space, there is a challenge since

the position and the orientation change anomalously

while it simultaneously travels with rotation. By using

captured images by multiple cameras with different

exposure times, in this paper, we solve the problem of

using asynchronous captured images and the problems

that make trajectory estimations difficult due to diverse

changes of the observation shape.

4.1 Trajectory Estimation Method Using Shape-

from-Silhouette

By applying a 3D reconstruction method called shape-

from-silhouette, in this section, we introduce our method

for estimating the 3D position of a shuttle that does not

follow a simple dynamic model. The shuttle was

captured by two types of camera with different exposure

times. Although it moves very quickly when its image is

captured in a very short exposure time, it has little

motion blur. In this case, the accuracy of the 3D position

estimation is improved. On the one hand, the influence
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Fig. 8  Overall flow of the proposed method.



of the gap for capturing the timing becomes more serious

(i.e., we need to completely synchronize all of the

multiple cameras). On the other hand, if we capture a

shuttle with a long exposure time, a large motion blur

occurs since it is observed as a line in the image. In this

case, although accurately estimating the position is

difficult due to the uncertainty of the blur, the influence

of the synchronizing error becomes smaller. Therefore,

we propose a method that complementarily uses two

types of cameras that capture different exposure times.

As shown in Fig. 9, the long exposure cameras

(Cameras 1 and 3) are located at right angles to the Y-

and X-axes, respectively. The short exposure camera

(Camera 2) is located at right angles to the Y-axis. Each

camera is calibrated in advance.

We extract the observation line from the clipped out

region from the captured image shown in the upper

space of Fig. 9 (a), as a pre-process for the 3D

reconstruction.

In our developed system, the resolution of input image

is 1,920 × 1,080 pixels and the observation size of a

shuttle (motion blurred) region is about 30 × 30 pixels.

Fig. 9 (a) shows examples of the thinning process. We

extract the silhouette image by executing background

subtraction and binarization. Then, we extract the

observation line by applying a thinning process to the

binary image. This process is applied to multiple

captured images. To estimate the 3D trajectory, we

apply shape-from-silhouette to the extracted thinning

image of the shuttle region (observation line). Here, all

cameras are calibrated in advance. First, we set the 3D

voxel space around the approximate 3D position of the

shuttle, as shown in Fig. 9 (b). In our system, according

to the spatial-resolution of the captured image, the

distance between each element of the voxel is set at 0.01

m. A voxel element is projected onto a captured image

(e.g., Camera 1) by using camera parameters derived

from the camera calibration results. Then, we examine

whether an observation line exists at the projected

position (pixel) or not and we delete the element if the

observation line is not observed at the position, as shown

in Fig. 9 (c) and 9 (d). To respond flexibly to projection

error (i.e., camera calibration error), we set the

thickness to the observation line. Specifically, we

calculate the distance between the projected point and

the observation line, and if the distance is less than a

threshold, the point is regarded as existing on the

observation line. In repeating a similar process with all

of the other images, as shown in Fig. 9 (e), we estimate

the 3D shape of the observation line. The blue region of

Fig. 9 (f) shows a 3D observation line of the shuttle

estimated by the observation of the long exposure image.

Then the shuttle's 2D position, detected in the image

captured by a short exposure time camera (Camera 2), is
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Fig.9  (a) Thinning process of shuttle region. (b) The 3D voxel space. (c) We project an element of the voxel onto Camera 1. When an observation

line is not observed, we deleted the element from the voxel space. (d) We project an element of the voxel onto Camera 2. When an

observation line was not observed, we deleted the element from the voxel space. (e) 3D trajectory estimation using shape-from-silhouette.

The 3D shape of the observation line is estimated as a bunch of voxels. (f) The shuttle’s 2D position, detected in the image captured by a

short exposure time camera (Camera 2) is projected onto the 3D observation line.



projected onto the 3D observation line. We can estimate

the target shuttle's 3D position as intersection points.

4.2 Experimental Results

The multiple videos are captured using three digital

single-lens reflex cameras (Canon EOS 5D Mark-II) with

a 1,920 × 1,080 pixels resolution, at 30 frames/sec. The

shutter speed (exposure time) is set to 1/30 sec (Fig. 9,

Cameras 1 and 3) and 1/200 sec (Fig. 9, Camera 2),

respectively. The badminton game is played in a

gymnasium and if you set the shutter speed to be 1/200

seconds faster or more, it cannot obtain the shuttle

region on the image due to the insufficient light source

environment. Therefore, the short exposure time set in

this study is defined as 1/200 sec. For the long exposure

time, 1/30 second, which is the exposure time of general

photography, was selected. To apply the proposed

method, it is necessary to shoot the short exposure time

camera within the overlapping period of the plurality of

the long exposure time cameras. Fig. 11 shows the

proposed method using a video sequence. From the

results in Fig. 11, we confirmed that the proposed

method could be applied to video images. Specifically, we

used badminton shuttle images taken at the actual

gymnasium.

However, acquiring the shuttle's exact ground truth

was difficult using only video. For that reason, we

generated a 3D model of a badminton racket and a

shuttle and conducted another experimental evaluation

of our proposed method. A path similar to the shuttle

trajectory of live-action video on blender was entered.

We used the shuttle's 3D model to execute a CG

animation on the path. In this way, we obtained the

correct value of the shuttle and tested the estimation

accuracy of the proposed method. The following are the

characteristics of the shuttle's CG model: size (0.07 m).

In Fig. 10, we animate the trajectory of one cycle of the

shuttle. We set a virtual camera just like the one in the

environment that captured the badminton shuttle. We

generated shuttle motion blur in the blender, using the

observed appearance in the past four frames. We

precisely estimated the 3D position in both the video

sequences and the CG animation. Fig. 12 shows the

proposed method using a CG animation sequence and

Fig. 13 compares the experimental results of the

proposed and the previous methods 11). Although the

error average was approximately 0.04 m when applying

our proposed method, it increased to approximately 0.07

m with the previous method. The error of our estimation

accuracy is approximately 0.04 m, on average. As data

for the purpose of improving tactics, it is a range that

can be fully utilized. Therefore, we judged it to be

effective.
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Fig. 10  CG simulation of badminton shuttle.

Fig. 13 Comparison of experimental results of proposed and

previous techniques.

Fig. 11  Experimental results of video sequence.

Fig. 12  Experimental results of CG animation.



4.3 Potential for Sports Applications

In this research, we propose a method for moving the

images of one rally. Therefore, when applying the

proposed method to games, etc., the video must be

manually divided by rally. However, since it is possible

to estimate the 3D position of the shuttle in the proposed

method, it is possible to detect the moment when the

shuttle adheres to the ground. In addition, in badminton

competition, there is a rule that the opposing player will

be stationary when the other starts to serve. By using

such competitive characteristics, we have the possibility

of timing the detection of the rally start by general

image processing. However, to automate the proposed

method against a series of competition images, such as

with games, it is necessary to detect the moment when

the shuttle adheres to the ground and the timing of the

rally starts. By realizing this processing, it becomes

possible to divide video by rally and apply the proposed

method. In the proposed method, it is possible to

estimate the 3D position of the moving object quickly

and anomalously; the capturing condition makes it

possible to estimate the 3D position even by using an

asynchronous captured image.

In general, increasing the number of cameras

increases the calculation cost. However, since our

research is based on multi-view, the burden due to the

increase in the number of cameras is relatively small.

Specifically, when increasing the number of cameras,

the merit of improving the estimation accuracy is larger

than the increase in the calculation cost. Therefore,

increasing the number of cameras that have the role of

Camera 2 (short exposure time) will improve the

accuracy. In addition, since there is a limit on the

brightness of the actual gymnasium, there is a limit to

shortening the exposure time of Camera 2. Therefore,

except in special cases, improving the accuracy by

shortening the exposure time is impossible and

increasing the number of cameras is a practical method

in sports applications.

5. Conclusion

This paper proposed a method of applying motion blur

with shape-from-silhouette using multi-viewpoint

imaging for the estimation of 3D trajectories for a

badminton shuttle. To estimate the 3D trajectory of the

observation line in the multiple-view image, we

confirmed that the proposed method could estimate the

3D trajectory even when the shuttle moves very quickly

and anomalously.
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